Hunting the Last Missing Particle of the Standard Model

Slides:



Advertisements
Similar presentations
Higgs physics theory aspects experimental approaches Monika Jurcovicova Department of Nuclear Physics, Comenius University Bratislava H f ~ m f.
Advertisements

1 Higgs Mechanism Cyril Topfel. 2 What to expect from this Presentation (Table of Contents) Some very limited theory explanation Higgs at.
The Standard Model and Beyond [Secs 17.1 Dunlap].
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Nordic LHC Physics Workshop Stockholm Nov MSSM Higgs Searches at LEP Tord Ekelöf Uppsala University.
THE SEARCH FOR THE HIGGS BOSON Aungshuman Zaman Department of Physics and Astronomy Stony Brook University October 11, 2010.
Sub Z Supersymmetry M.J. Ramsey-Musolf Precision Electroweak Studies in Nuclear Physics.
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Nailing Electroweak Physics (aka Higgs Hunting) with the Next Linear Collider Bob Wilson High Energy Physics Group CSU Physics Research Evening November.
Hunting for New Particles & Forces. Example: Two particles produced Animations: QPJava-22.html u u d u d u.
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
Jose E. Garcia presented by: Jose E. Garcia (IFIC-Valencia) on behalf of ATLAS Collaboration XXXIXth Rencontres de Moriond.
1 Search for Excited Leptons with the CMS Detector at the Large Hadron Collider. Andy Yen, Yong Yang, Marat Gataullin, Vladimir Litvine California Institute.
Discovery Potential for MSSM Higgs Bosons with ATLAS Johannes Haller (CERN) on behalf of the ATLAS collaboration International Europhysics Conference on.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
05/11/2006Prof. dr hab. Elżbieta Richter-Wąs Physics Program of the experiments at L arge H adron C ollider Lecture 5.
New Physics at the LHC/ILC B-L Workshop, LBNL September, 2007 Sally Dawson (BNL)
Property of 125 GeV Higgs Boson from LHC Data Seminar at Academia Sinica 07/04/2012 Muneyuki Ishida 石田宗之.
August 22, 2002UCI Quarknet The Higgs Particle Sarah D. Johnson University of La Verne August 22, 2002.
Higgs Properties Measurement based on HZZ*4l with ATLAS
17 April. 2005,APS meeting, Tampa,FloridaS. Bhattacharya 1 Satyaki Bhattacharya Beyond Standard Model Higgs Search at LHC.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
New Results From CMS Y.Onel University of Iowa A Topical Conference on elementary particles, astrophysics and cosmology Miami 2011, Dec 15-20, 2011 conference.
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
The Search For Supersymmetry Liam Malone and Matthew French.
The Higgs Boson Beate Heinemann, University of Liverpool  The Standard Model and Beyond  Tevatron and LHC  Tevatron Results on Higgs Searches  Future.
The Standard Model of the elementary particles and their interactions
Flavour independent neutral Higgs boson searches at LEP Ivo van Vulpen NIKHEF On behalf of the LEP collaborations EPS conference 2005.
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
12 March 2006, LCWS06, BangaloreS. Bhattacharya 1 Satyaki Bhattacharya The Standard Model Higgs Search at the LHC University of Delhi.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
Particle Physics II Chris Parkes Top Quark Discovery Decay Higgs Searches Indirect mW and mt Direct LEP & LHC searches 2 nd Handout.
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
Fourth Generation Leptons Linda Carpenter April 2011.
Determining the CP Properties of a Light Higgs Boson
125 GeV Higgs and BSM physics
Electroweak Physics Lecture 6
Journées de Prospective
Physics Overview Yasuhiro Okada (KEK)
The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB:
g g s High Mass Higgs at the Tevatron
Lecture 13 Higgs Hunting --- The experimental Perspective
Grand Unified Theories and Higgs Physics
Exploration and Challenges at the Large Hadron Collider
Probing Supersymmetry with Neutral Current Scattering Experiments
Finish off Higgs reach at Tevatron and CMS
Some Implications Of The Recent LHC Higgs Search Results Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
Higgs and SUSY at future colliders
News from ~1fb-1 of e+e- data at Ecm= GeV
Experimental Particle PhysicsPHYS6011 Performing an analysis Lecture 5
Searching for SUSY in B Decays
Jessica Leonard Oct. 23, 2006 Physics 835
Section XI - The Standard Model
Search For New Physics Chary U of S.
Methods of Experimental Particle Physics
Physics at a Linear Collider
Physics Overview Yasuhiro Okada (KEK)
Physics Overview Yasuhiro Okada (KEK)
SUSY SEARCHES WITH ATLAS
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Hunting the Last Missing Particle of the Standard Model Shufang Su • Caltech

Particles and Forces Building blocks of matter -- elementary particles smaller distance : higher energy Fundamental interactions Gravity Electromagnetic force Weak interaction nuclear -decay, burning of the sun … Strong interaction -decay, holds proton and neutron … forces ? S. Su U. Arizona - Colloquium

Exp Discovery and Theory Development - c b t 1 GeV = 109 eV=1.8x10-24 g  p n  Z W s d Electromagnetic  Weak interaction Z,W Strong interaction g Standard Model u e mass (GeV) e    g theory S. Su U. Arizona - Colloquium

Standard Model mW=80 GeV mZ=91 GeV Simply impose mass - mW=80 GeV mZ=91 GeV Simply impose mass  theory not self-consistent Create mass for “gauge boson”  predict a Higgs particle However, we have not find this particle yet … Is there anything missing ? S. Su U. Arizona - Colloquium

Outline prediction  evidence confirmation establishment - prediction  evidence confirmation establishment Why need a Higgs ? How to search the Higgs ? Is it really a (Standard Model) Higgs ? How to probe new physics using Higgs study ? S. Su U. Arizona - Colloquium

Why need a Higgs ? S. Su U. Arizona - Colloquium

Electroweak Symmetry Breaking - EM Photon  m=0 Weak W+,W- Z mW=80 GeV mZ=91 GeV 2x10-18 m Begin with a unified theory of EM and weak interaction We want something that not disturb electromagnetic force make weak interaction short-range Higgs mechanism P.W. Higgs (1964, 1966) Weinberg(1967), Salam (1968) Universe filled with background Higgs field Particle get mass via interaction with the background Higgs field How to give mass to W and Z boson ? How to give mass to quarks and leptons ? S. Su U. Arizona - Colloquium

Higgs Mechanism (Particle Physics) - Potential V= - m2 H2 + ½  H4 left-over degree of freedom  physical Higgs particle minimize the potential mHSM2 v2  (100 GeV)2 H0=v Higgs degree of freedom eaten by W and Z  longitudinal modes  W ,Z obtain mass W,Z mass W H g X H0=v mW  gv  v=246 GeV gauge transformation S. Su U. Arizona - Colloquium

Higgs Property However, Higgs is still missing ... Go look for it! - Advantage of Higgs mechanism quark and lepton mass SM (with Higgs) agrees well with experiments f H y X H0=v mf  y v Higgs property v=246 GeV CP even scalar coupling  mass fermion mf/v gauge boson mW/v , mZ/v mass : mHSM2 v2  (100 GeV)2 mass not predicted Other model: composite Higgs hard to fit with experimental data hard to build model However, Higgs is still missing ... Go look for it! S. Su U. Arizona - Colloquium

Theoretical Constraint on mHSM - V= - m2 H2 + ½  H4 mH2= v2 K. Riesselmann (1997) 105 GeV (ytyt  … Landau pole  = Mpl  1019 GeV 130 GeV < mH < 180 GeV 116 GeV potential unbounded from below SM valid up to scale  S. Su U. Arizona - Colloquium

Indirect Constraint from Electroweak Data - indirect direct without NuTeV LEP EWWG indirect bounds: mt= 171-9 GeV direct search: mt=174.3  5.1 GeV +11 mHSM=81+52 GeV mHSM<193 GeV at 95% C.L. -33 S. Su U. Arizona - Colloquium

How to search the Higgs ? Decay right after it is produced does not exist in nature anymore produced it at high-energy colliders look for its decay products at detectors S. Su U. Arizona - Colloquium

Higgs Decay (SM) mHSM (GeV) mHSM  135 GeV mHSM  135 GeV - mHSM  135 GeV mHSM  135 GeV Branching ratio gold-plated mode for LHC seaches: Ze+e- / +- BrHSM =  (HSM  final state)  (HSM  everything) mHSM (GeV) M. Spira (1998) S. Su U. Arizona - Colloquium

LEP Search : Current mHSM Limit - Large Electron Positron Collider (CERN) Ecm  189 GeV 2461 Pb-1 Ecm  206 GeV 536 Pb-1 1 pb= 10-12 b; 1b=10-28 m2 e- e+ four jets Hbb, Zqq missing energy Hbb, Z leptonic Hbb, Zll tau lepton Hbb, Z H, Zqq e+e- ZHSM Add plot possible signal mHSM  116 GeV signal+background 37% C.L. background 8% C.L. exclusion bound mHSM  114.4 GeV 95% C.L. S. Su U. Arizona - Colloquium

Higgs Prodcution at Tevatron (Run II) - - Tevatron (Fermilab) pp collider CDF, D0 / Ecm = 2 TeV L= 2 fb-1 / year events/year 2x104 huge background W,Z  leptons mHSM  135 GeV HSM  bb mHSM  135 GeV HSM  W+W- cross section (pb) 2x102 2 M. Spira (1998) S. Su U. Arizona - Colloquium

Higgs Search at Tevatron (Run II) - Tevatron (Fermilab) Ecm = 2 TeV, L= 2 fb-1 / year If no Higgs is found 95% C.L. exclusion limit (15 year) (5 year) (1 year) Run II Higgs working group S. Su U. Arizona - Colloquium

Higgs Search at Tevatron (Run II) - Tevatron (Fermilab) Ecm = 2 TeV, L= 2 fb-1 / year Discovery reach (15 year) 130 20 fb-1 (5 year) (1 year) Run II Higgs working group S. Su U. Arizona - Colloquium

Higgs Producction at LHC - Large Hadron Collider (CERN) pp ATLAS, CMS events/year Ecm = 14 TeV L= 10 fb-1 / year 102 106 mHSM  135 GeV HSM   mHSM  135 GeV HSM  W+W-, ZZ ggH 10 p 1 104 cross section (pb) HSM  , , W+W-, ZZ 120 GeV HSM  180 GeV 10-1 10-2 102 10-3 M. Spira (1998) 10-4 1 mHSM (GeV) S. Su U. Arizona - Colloquium

Higgs Search at LHC Large Hadron Collider (CERN) pp - Large Hadron Collider (CERN) pp L=10 fb-1 / year ggH ggHtt 5  cover entire Higgs mass region of SM with more than 5  significance. CMS, ATLAS (2002) S. Su U. Arizona - Colloquium

Need precise study of Higgs properties at a e+e- collider If we see something at LHC looks like a Higgs … Is it really a Higgs ? Is it the Standard Model Higgs ? Need precise study of Higgs properties at a e+e- collider basic properties: mass, width, spin and CP quantum number origin of particle mass  Higgs coupling  particle mass reconstruct Higgs potential: Higgs self-coupling S. Su U. Arizona - Colloquium

Higgs Prodcution at LC Linear Collider e+e- clean environment Ecm = 500 GeV / 1 TeV ; L= 500 / 1000 fb-1 / year H HZ H cross section (fb) HZ Hee Hee mHSM (GeV) LC source book copiously produced, thousands of events S. Su U. Arizona - Colloquium

Higgs Mass, Decay Width and JPC - Miller et. al. (2001) Garcia et al. (2001) Higgs mass: mHSM = 40 MeV reconstruct Higgs in ZH production compare with indirect bounds from global fit e+ e- Z H Higgs decay width: HSM/ HSM = 6% HSM =  (HSM  W+W-) Br (HSM  W+W-) Higgs production H Higgs decay HSM  W+W- e+e-  Z final state angular distribution angular and polarization asymmetry S. Su U. Arizona - Colloquium

Higgs Coupling mHSM  150 GeV Higgs decay branching ratio - mHSM  150 GeV Higgs decay branching ratio Higgs production cross section mHSM  150 GeV HSM  cc, gg,  too small HSM  W+W-,ZZ precisely measured HSM  bb precision reduced when mHSM  200 GeV HSM  tt possible when mHSM  2 mt reconstruct Higgs potential v Carena et. Al. (2002) mHSM = 120 GeV S. Su U. Arizona - Colloquium

Photon Collider e+e-collider operating in  mode Ecm=0.8 Ecmee measure  (HSM  )  bb  (HSM  ) Br(HSM  bb) sensitive to heavy states Higgs decay width HSM =  (HSM  ) / Br(HSM   ) mHSM  200 GeV , directly measure HSM photon polarization  CP quantum number every particle (get mass from Higgs) contributes S. Su U. Arizona - Colloquium

There must be new physics beyond minimal Standard Model If we find deviation from Standard Model prediction … What can we learn ? There must be new physics beyond minimal Standard Model What is it ? How to probe it using Higgs study ? S. Su U. Arizona - Colloquium

What New Physics ? Minimal Supersymmetric Standard Model (MSSM) - SM is an effective theory below some energy scale  Hierarchy problem: MEW100 GeV , Mplank 1019 GeV ? Naturalness problem: mass of a fundamental scalar (like Higgs) receive huge quantum corrections: (mH2)physical  (mH2)0 + 2 (100 GeV)2 H - 2 H -(1019 GeV)2 precise cancellation up to 1034 order (1019 GeV)2 Supersymmetry SM particle superpartner Spin differ by 1/2 Minimal Supersymmetric Standard Model (MSSM) S. Su U. Arizona - Colloquium

Higgs Sector in MSSM CP-even Higgs h0 decoupling limit: mA0  mZ h0 similar to SM Higgs h0 mass tree level: mh0mZ loop corrections: mh0 135 GeV SM MSSM HSM Hd, Hu HSM0=v v=246 GeV Hd0=v1 ,Hu0=v2 v2=v12 +v22 tan=v2/v1  H4 g12+g22 (mHSM2 v2) h0 (mh0) H0 ,A0 ,H (mA0) gauge coupling SM Higgs searches at low mass region could be applied to the light MSSM Higgs h0 MSSM Higgs sector determined by tan and mA0 S. Su U. Arizona - Colloquium

LEP Search Limit (MSSM) - e+e- Zh0 e+e- A0h0 cos2(-eff)  sin2(-eff) A0h0 mA0  91.9 GeV mh0  91.0 GeV Zh0 0.5  tan  2.4 S. Su U. Arizona - Colloquium

Bounds on mA0 From Higgs Coupling Measurements -  Br(HW+W-)=5% mA0 controls the degree of decoupling h0 coupling mZ2 HSM coupling mA02 -1  mA0  mZ decoupling region no deviation mA0  650-800 GeV non-zero deviation  constraints on mA0 Carena et. al. (2002) S. Su U. Arizona - Colloquium

Three SUSY Breaking Scenarios - supersymmetry must be broken electron: m=0.511 MeV, no scalar-electron MSSM: 105 new SUSY breaking parameters out of control mechanism for SUSY breaking: (flavor blind) greatly reduce SUSY parameters low energy MSSM (visible sector) 105 parameters SUSY-breaking (hidden sector) a few parameters gravity gravity-mediated SUSY breaking (SUGRA) gauge-mediated SUSY breaking (GMSB) gauge interaction anomaly-mediated SUSY breaking (AMSB) anomaly something S. Su U. Arizona - Colloquium

Distinguish SUSY Breaking Scenario - LEP search bound Dedes, Heinemeyer, SS, weiglein (2001, 2002) MSSM SUGRA GMSB AMSB mh0max (GeV) 135 127 123 125 tanmin 0.5 or 2.4 2.9 3.1 3.8 deviation from SM Higgs coupling  constrains on mA0 mA0  500 GeV mA0  1000 GeV S. Su U. Arizona - Colloquium

GMSB and AMSB mA0  1300 GeV mA0  1100 GeV S. Su - mA0  1300 GeV mA0  1100 GeV S. Su U. Arizona - Colloquium

Can we distinguish various SUSY breaking scenario? Distinguish SUSY Breaking Scenario - 500 GeV  mA0  600 GeV , tan  30 AMSB if we know ranges of mA0, tan from LHC if we see deviations of coupling at LC Can we distinguish various SUSY breaking scenario? GMSB SUGRA S. Su U. Arizona - Colloquium

Conclusion Why need a Higgs ? - Why need a Higgs ? How to search the Higgs ? Is it really a (Standard Model) Higgs ? How to probe new physics using Higgs study ? Higgs mechanism provides a simple and elegant way to explain the origin of the mass Tevatron Run II exclude Higgs up to 180 GeV (10 fb-1) LHC would find the Higgs if it is there detail study at Linear Collider measure Higgs mass, decay width, coupling… at high precision Minimal Supersymmetric Standard Model (MSSM) constrain parameter space (mA0) distinguish various SUSY breaking scenarios Heavy Higgs search S. Su U. Arizona - Colloquium

The hunting is continuing … Tevatron p LHC p - p 2007-- Now -- S. Su U. Arizona - Colloquium