Cyanobacteria’s Repeat Sequences… where did they come from?

Slides:



Advertisements
Similar presentations
ECE 501 Introduction to BME
Advertisements

Microbial Genetics (Micr340)
Position of HIP-1 (Highly Iterated Palindrome -1) in Cyanobacteria around Deoxyadenosine Methylase loci. BY: LIAM LEWIS.
Arabidopsis Gene Project GK-12 April Workshop Karolyn Giang and Dr. Mulligan.
DNA Forensics. DNA Fingerprinting - What is It? Use of molecular genetic methods that determine the exact genotype of a DNA sample in a such a way that.
Ch5 Sec3 Advances in Genetics. Key Concepts What are three ways of producing organisms with desired traits? What is the goal of the Human Genome Project?
“CRISPR genome editing” Precise gene regulation/modification using the simple CRISPR/Cas9 system Thank you. Nucleeases will be used as a new tool that.
The case:  2005: No production Continued sampling  2006: Detected plants expressing transgene - demonstrated pollen transfer and seed dispersal (Reichman.
GenomesGenomes Chapter 21 Genomes Sequencing of DNA Human Genome Project countries 20 research centers.
Welcome to Introduction to Bioinformatics Monday, 28 February 2005 Introduction to Research Projects.
Hugh E. Williams and Justin Zobel IEEE Transactions on knowledge and data engineering Vol. 14, No. 1, January/February 2002 Presented by Jitimon Keinduangjun.
DNA alphabet DNA is the principal constituent of the genome. It may be regarded as a complex set of instructions for creating an organism. Four different.
ANALYSIS AND VISUALIZATION OF SINGLE COPY ORTHOLOGS IN ARABIDOPSIS, LETTUCE, SUNFLOWER AND OTHER PLANT SPECIES. Alexander Kozik and Richard W. Michelmore.
Genomes & their evolution Ch 21.4,5. About 1.2% of the human genome is protein coding exons. In 9/2012, in papers in Nature, the ENCODE group has produced.
Chapter 21 Eukaryotic Genome Sequences
BACTERIAL TRANSPOSONS
Biotechnology. Polymerase Chain Reaction PCR is the cloning of DNA (amplification). Copies are made and the amount of DNA can be rapidly increased. Useful.
Check In Selective Breeding Lab. Arikara, Nesaru & The Corn Mother.
Mobile DNA  Transposons By Anna Purna
Eukaryotic Genomes: The Organization and Control.
Biodiversity. Genetic Mutations Change in base pairs Affect sequence May affect protein production Can alter genetic makeup within species.
Trinity College Dublin, The University of Dublin GE3M25: Computer Programming for Biologists Python, Class 4 Karsten Hokamp, PhD Genetics TCD, 01/12/2015.
What you need to know: The major goals of the Human Genome Project How prokaryotic genomes compare to eukaryotic genomes. The activity and role of transposable.
Chapter 2 Genetic Variations. Introduction The human genome contains variations in base sequence from one individual to another. Some sequence variants.
What is BLAST? Basic BLAST search What is BLAST?
DNA Questions What makes up a DNA backbone? How would you describe how DNA looks? Name the 4 bases that make up DNA. “T” base can only match with? What.
 DNA- genetic material of eukaryotes.  Are highly variable in size and complexity.  About 3.3 billion bp in humans.  Complexity- due to non coding.
Objective: I can explain how genes jumping between chromosomes can lead to evolution. Chapter 21; Sections ; Pgs Genomes: Connecting.
CRISPR BTE 302 FINAL PRESENTATION.  Ehsan Sakib ( )  Prateem Das ( )  Olia (136032)
What is BLAST? Basic BLAST search What is BLAST?
DNA Forensics.
Use of CRISPR/Cas to edit the Arabidopsis Na+/H+ Antiporter NHX1
Chapter 14 GENETIC VARIATION.
Transposable Elements
Example of a common SNP in dogs
Mutations & Genetic Engineering
Website: Contact No: ID:
Does function explain size?
SGN23 The Organization of the Human Genome
Manipulating an organism’s genome using biotechnology
Genomes and Their Evolution
CRISPR + CAS = Defensive or Immune System
DNA Three billion base pairs in DNA 99.5% similarity among individuals
What kinds of things have been learned?
Genomes and Their Evolution
Genomes and Their Evolution
Eukaryotic Genomes: The Organization and Control.
CRISPRs and Tandem Repeats
Gene Density and Noncoding DNA
Genomics for Regional Development
Basic Local Alignment Search Tool
The CRISPR/Cas9 system.1 Clustered regularly interspaced palindromic repeats (CRISPR) refers to sequences in the bacterial genome. The CRISPR/Cas9 system.1.
Figure 1 Adaptive immune system of bacteria and archaea
The CRISPR/Cas9 system.1 Clustered regularly interspaced palindromic repeats (CRISPR) refers to sequences in the bacterial genome. The CRISPR/Cas9 system.1.
BSC1010: Intro to Biology I K. Maltz Chapter 21.
Genomes and Their Evolution
Genomes and Their Evolution
CSCI 1810 Computational Molecular Biology 2018
Genomes and Their Evolution
Instability: Mutation and DNA repair
CRISPR……... …..is complicated. But we are going to focus on Cas9.
Transposable Elements
Genomes and Their Evolution
Whole-genome comparison of E
Genes & Mutations Miss Richardson SBI4U.
Basic Local Alignment Search Tool
9-1 DNA: the Indispensable Forensic Tool
Organization of TCAST elements within T
Genomes and Their Evolution
Repetitive DNA sequences
Presentation transcript:

Cyanobacteria’s Repeat Sequences… where did they come from? Molly Sergio

Overview of Presentation unique DNA repeats Cyanobacteria genomes Similarities? Research !

Eureaka! Repeated Sequences! Dispersed Repeats Tandem Repeats CRISPRs

Dispersed Repeats Jumping Genes Transposons! Barbara McClintock

Tandem Repeats “Slippage”

CRISPRs Jump? Slippage? Where do CRISPRs come from? Clustered Short Regularly Spaced Palindromic Repeat ~ 35 to 37 nucleotides Jump? Exact count of nuclotides Slippage? Non-CRISPR sequence would be duplicated Where do CRISPRs come from? Picture credit: James Godde

Example of CRISPRs in Npun

CRISPR Sequences Found In Cyanobacteria Copy # 28 GTTACTTACCATCACTTCCCCGCAAGGGGATGGAAAC 16 GTTTTAACTAACAAAAATCCCTATCAGGGATTGAAAC 13 GTTTCTATTAACACAAATCCCTATCAGGGATTGAAAC 9 GTTGCAACACCATATAATCCCTATTAGGGATTGAAAC 4 GTTAAAACCCTCTAAAATCCCTATCAGGGATTGAAAC 4 GTTGCAACCCTCCTTCCAGTAATGGGAGGGTTGAAAG Nostoc PCC 7120 58 ATTGCAATTTCTCAAAATCCCTATTAGGGATTGAAAC 42 ATTGCAATTCATCAAAATCCCTATCAGGGATTGAAAC 19 ATTGCAATTCATCAAAATCCCTATTAGGGATTGAAAC 9 ATTGCAATTTATCAAAATCCCTATTAGGGATTGAAAC 12 GTGGCAACAACCCTCCAGGTACTGGGTGGGTTGAAAG Nostoc punctiforme 2-4 CGGTTTATCCCCG GCGGG-GAACAC CTGGC Escherichia coli

Similarity Between CRISPRs 28 GTTACTTACCATCACTTCCCCGCAAGGGGATGGAAAC 16 GTTTTAACTAACAAAAATCCCTATCAGGGATTGAAAC 13 GTTTCTATTAACACAAATCCCTATCAGGGATTGAAAC 9 GTTGCAACACCATATAATCCCTATTAGGGATTGAAAC 4 GTTAAAACCCTCTAAAATCCCTATCAGGGATTGAAAC 4 GTTGCAACCCTCCTTCCAGTAATGGGAGGGTTGAAAG Nostoc PCC 7120 58 ATTGCAATTTCTCAAAATCCCTATTAGGGATTGAAAC 42 ATTGCAATTCATCAAAATCCCTATCAGGGATTGAAAC 19 ATTGCAATTCATCAAAATCCCTATTAGGGATTGAAAC 9 ATTGCAATTTATCAAAATCCCTATTAGGGATTGAAAC 12 GTGGCAACAACCCTCCAGGTACTGGGTGGGTTGAAAG Nostoc punctiforme CGGTTTATCCCCG GCGGG—GAACAC CTGGC Escherichia coli 2-4

How did CRISPRS arise in cyanobacteria genomes? Anabaena 7120 Any matching CRISPR in Anabaena variabilis? compare Any non-CRISPR sequences match? Anabaena variabilis ? ?

Locating a CRISPR in a7120 1 36 (SEQUENCE-SIMILAR-TO "CTTTCCGATCACATCACCCCGAAAGGGGATGGAAAC" IN a7120) Query Q-start Q-end Subject S-start S-end ID value 1. "Seq1" 1 36 #$A7120.CHROMOSOME 5647145 5647110 100% 2. "Seq1" 1 36 #$A7120.CHROMOSOME 5647076 5647041 100% 3. "Seq1" 1 36 #$A7120.CHROMOSOME 5646995 5646960 100% 4. "Seq1" 1 36 #$A7120.CHROMOSOME 5646922 5646887 100% 5. "Seq1" 1 36 #$A7120.CHROMOSOME 5646849 5646814 100% 6. "Seq1" 1 36 #$A7120.CHROMOSOME 5646774 5646739 100% 7. "Seq1" 1 36 #$A7120.CHROMOSOME 5646703 5646668 100% 8. "Seq1" 1 36 #$A7120.CHROMOSOME 5646635 5646600 100% 9. "Seq1" 1 36 #$A7120.CHROMOSOME 5646562 5646527 100% 10."Seq1" 1 36 #$A7120.CHROMOSOME 5646490 5646455 100%

Locating in between an a7120 CRISPR (FOR-EACH coord-pair IN * AS left-coord = (+ (FIRST coord-pair) 1) AS right-coord = (- (SECOND coord-pair) 1) AS seq = (SEQUENCE-OF A7120.chromosome FROM left-coord TO right-coord) COLLECT seq) Non-coding sequences (in between CRISPRs) 1-2. "GAGAGACTGGAAACAATTTCTATAGCGATGTCGGAT" 2-3. "TCAATCATCTTTGCATTATATCCTGAAATTACAAGAT" 3-4. "CTCCCTTAGCCACTCTAGGATTTGTGACTGTT" 4-5. "ATGATTATCGAGGAATCTCGAAAATAGGACGTCGA" 5-6. "AAGCGACCATCGCTTTTTGCACGAACAGCAGATGGAACG" 6-7. "TCCTGCTCCAAGCATTAGTCCTTCGGAGATTAAAAAC" 7-8. "TAACTACTGCAAGCGTTGTGCAAGCAGCAATACCTGC" 8-9. "TGCACATTGATATAAACGAAGCTAAAAAAGCCTCTACCAATATAA" 9-10."TCTTGCATACAAAGCTGCATTTCTAGATGACAA"

How did CRISPRS arise in cyanobacteria genomes? GAGAGACTGGAAACAATTTCTATAGCGATGTCGGAT Anabaena 7120 CTTTCCGATCACATCACCCCGAAAGGGGATGGAAAC Compare CRISPR similarity Compare similarity Anabaena variabilis

? CRISPR Sequences Found In Cyanobacteria Anabaena variabilis Blast Copy # 28 GTTACTTACCATCACTTCCCCGCAAGGGGATGGAAAC 16 GTTTTAACTAACAAAAATCCCTATCAGGGATTGAAAC 13 GTTTCTATTAACACAAATCCCTATCAGGGATTGAAAC 9 GTTGCAACACCATATAATCCCTATTAGGGATTGAAAC 4 GTTAAAACCCTCTAAAATCCCTATCAGGGATTGAAAC 4 GTTGCAACCCTCCTTCCAGTAATGGGAGGGTTGAAAG Nostoc PCC 7120 1 2 3 4 5 6 Anabaena variabilis Blast ?

How did CRISPRS arise in cyanobacteria genomes? (SEQUENCE-SIMILAR-TO "CTTTCCGATCACATCACCCCGAAAGGGGATGGAAAC" IN avar) Nil (SEQUENCE-SIMILAR-TO "**********************************************" IN avar) Use a different CRISPR and its non-CRISPR sequences from a7120… (SEQUENCE-SIMILAR-TO "GTTTTAATTCCTTTACCCCTCACGGGGATGGAAAC" IN avar) Query Q-start Q-end Subject S-start S-end E-value 1. "Seq1" 1 35 #$A29413.Contig256 360180 360074 1.0d-13 2. "Seq1" 1 35 #$A29413.Contig256 360039 360005 1.0d-13 (SEQUENCE-SIMILAR-TO "**********************************************" IN avar) Nil

? Sequences Found In Cyanobacteria Anabaena variabilis Blast Copy # 28 GTTACTTACCATCACTTCCCCGCAAGGGGATGGAAAC 16 GTTTTAATTCCTTTACCCCTCACGGGGATGGAAAC 13 GTTTCTATTAACACAAATCCCTATCAGGGATTGAAAC 9 GTTGCAACACCATATAATCCCTATTAGGGATTGAAAC 4 GTTAAAACCCTCTAAAATCCCTATCAGGGATTGAAAC 4 GTTGCAACCCTCCTTCCAGTAATGGGAGGGTTGAAAG Nostoc PCC 7120 1 2 3 4 5 6 Anabaena variabilis Blast ?

? Sequences Found In Cyanobacteria Anabaena variabilis Blast Copy # 28 GTTACTTACCATCACTTCCCCGCAAGGGGATGGAAAC 16 GTTTTAATTCCTTTACCCCTCACGGGGATGGAAAC 13 GTTTCTATTAACACAAATCCCTATCAGGGATTGAAAC 9 GTTGCAACACCATATAATCCCTATTAGGGATTGAAAC 4 GTTAAAACCCTCTAAAATCCCTATCAGGGATTGAAAC 4 GTTGCAACCCTCCTTCCAGTAATGGGAGGGTTGAAAG 2 147 35 146 Nostoc PCC 7120 1 2 3 4 5 6 Anabaena variabilis Blast ?

What conclusions can be drawn? Anabaena 7120 has at least four unique CRISPRs that were found in Anabaena variabilis common ancestor of cyanobacteria Six matching CRISPRs inserted retained all six CRISPRs lost two CRISPRs Anabaena 7120 Anabaena variabilis

What conclusions can be drawn? Anabaena 7120 has at least four unique CRISPRs that were found in Anabaena variabilis Anabaena variabilis common ancestor of cyanobacteria Anabaena 7120 six CRISPRs inserted four CRISPRs inserted into A.var

The End The End Special thanks to Dr. James Godde Assistant Professor at Monmouth, Illinois Contact number: 309-457-2350 Email: jgodde@monm.edu