Status of Linac and RLAs – Simulations

Slides:



Advertisements
Similar presentations
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
Advertisements

1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Bunched-Beam Phase Rotation- Variation and 0ptimization David Neuffer, A. Poklonskiy Fermilab.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
LHeC Test Facility Meeting
FFAG Concepts and Studies David Neuffer Fermilab.
ABSTRACT The International Design Study for the Neutrino Factory (IDS- NF) baseline design 1 involves a complex chain of accelerators including a single-pass.
Ajit Kurup, C. Bontoiu, M. Aslaninejad, J. Pozimski, Imperial College London. A.Bogacz, V. S. Morozov, Y.R. Roblin Jefferson Laboratory K. B. Beard, Muons,
Muon Acceleration Plan David Kelliher ASTeC/STFC/RAL UKNF WP1, October 9 th, 2008.
Operated by JSA for the U.S. Department of Energy Muons, Inc. Winter MAP Mtg, Mar. 2 nd, 2011 Pre-Linac simulations in G4beamline Kevin B. Beard Muons,Inc.
1 EPIC SIMULATIONS V.S. Morozov, Y.S. Derbenev Thomas Jefferson National Accelerator Facility A. Afanasev Hampton University R.P. Johnson Muons, Inc. Operated.
ELIC Low Beta Optics with Chromatic Corrections Hisham Kamal Sayed 1,2 Alex Bogacz 1 1 Jefferson Lab 2 Old Dominion University.
Acceleration System Comparisons S. Machida ASTeC/RAL September, 2005, ISS meeting at CERN.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Harold G. Kirk Brookhaven National Laboratory Progress in Quad Ring Coolers Ring Cooler Workshop UCLA March 7-8, 2002.
Recent Progress Toward a Muon Recirculating Linear Accelerator S.A.Bogacz, V.S.Morozov, Y.R.Roblin 1, K.B.Beard 2, A. Kurup, M. Aslaninejad, C. Bonţoiu,
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
WP3: The Neutrino Factory Costing Status Ajit Kurup CERN Costing Workshop 8 th December 2011.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Y. R. Roblin, NUFACT 2012, July JEMMRLA Jefferson.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Acceleration in.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
Progress on the Linac and RLAs
JLEIC simulations status April 3rd, 2017
Parametric Resonance Ionization Cooling of Muons
PERLE - Current Accelerator Design
Large Booster and Collider Ring
Modeling the Upper, Middle, & Lower
Progress on the Linac and RLAs
Modeling the Upper, Middle, & Lower
‘Multi-pass-Droplet’ Experiment
Modeling the Upper, Middle, & Lower
Jeffrey Eldred, Sasha Valishev
Muon RLA - Design Status and Simulations
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
Electron Ring Optics Design
K.B. Beard1#, S.A. Bogacz2, V.S. Morozov2, Y.R. Roblin2
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Morteza Aslaninejad Cristian Bontoiu Juergen Pozimski
Optics ‘Scrapbook’ for ERL Test Facility
RLA WITH NON-SCALING FFAG ARCS
Pre-Linac simulations in G4beamline Alex Bogacz & Yves Roblin
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Muon RLA - Design Status and Simulations
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Progress Update on the Electron Polarization Study in the JLEIC
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Status of IR / Nonlinear Dynamics Studies
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
PERLE - Current Accelerator Design
Presentation transcript:

Status of Linac and RLAs – Simulations Alex Bogacz, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, Jürgen Pozimski Imperial College Vasiliy Morozov, Old Dominion University IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Linac and RLAs – ‘Big picture’ 1st part of this talk 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV 2nd part of this talk IDS Goals: Define beamlines/lattices for all components Resolve physical interferences, beamline crossings etc Error sensitivity analysis End-to-end simulation (machine acceptance) Component count and costing IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

RLA Lattice Studies - Status Presently completed lattices Linear pre-accelerator – solenoid focusing 4.5 pass Dogbone RLA × 2 (RLA I + RLA II) Optimized multi-pass linac optics (bisected - quad profile along the linac) Droplet return arcs (4) matched to the linacs Transfer lines between the components – injection chicanes Droplet arcs crossing – Double achromat Optics design Chromatic corrections with sextupoles at Spr/Rec junctions Error analysis for the Arc lattices (proof-or-principle) Magnet misalignment tolerance – DIMAD Monte Carlo Simulation Focusing errors tolerance – betatron mismatch sensitivity Piece-wise end-to-end simulation with OptiM (pre-accelerator + RLA I) IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Muon Acceleration Mini-workshop Feb 2-5, 2010 http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/ IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Solenoid Linac (244 -909 MeV) 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm 146 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Linac – tracking studies DONE SO FAR: shielded two-shell solenoid modeled with POISSON RF cavities modeled with SUPERFISH, COMSOL, & CST front-to-end lattice for OptiM (solenoids, dipoles, quadrupoles, & sextupoles) linac lattice tested in MAD-X beam tracking using GPT optical match of linac to cooling channel with one solenoid beam-loading effects evaluated as negligible standard for exchanging data files proposed IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Solenoid Model (Superfish) outer coil shield inner coil ‘Soft-edge’ Solenoid IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Two-cell cavity (201 MHz) – COMSOL Morteza Aslaninejad Cristian Bontoiu Jürgen Pozimski IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Initial phase-space after the cooling channel at 220 MeV/c Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c ISS/IDS erms A = (2.5)2 e normalized emittance: ex/ey mmrad 4.8 30 longitudinal emittance: el (el = sDp sz/mmc) momentum spread: sDp/p bunch length: sz mm 24 0.07 165 150 0.17 412 bx,y = 2.74 m ax,y = -0.356 bg = 2.08 IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Linac Optics – Beam envelopes 146 Thu Apr 08 13:54:52 2010 OptiM - MAIN: - C:\Working\IDS\PreLinac\Linac_sol.opt 30 Size_X[cm] Size_Y[cm] Ax_bet Ay_bet Ax_disp Ay_disp Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm NFMCC Collaboration Meeting, Oxford, MS, January 14, 2010

Linac Optics – OptiM vs ELEGANT 146 Sat Dec 13 22:36:02 2008 OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y a = 19.5 cm a = 19.5 cm Yves Roblin IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Longitudinal phase-space tracking MATHCAD OptiM Initial distribution Kevin Beard Alex Bogacz ELEGANT MATLAB Yves Roblin Morteza Aslaninejad IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Cooling Channel – Linac Optics b B|| a IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

GPT Particle Tracking in the Linac cooling -> upper linac upper -> middle linac IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Linac and RLAs - ‘field map’ tracking TO DO NEXT: Include cavity filling effect on accelaration Get a more accurate initial distribution Design an improved cooling-to-linac section Upgrade analytic cavity phasing – check against GPT Complete linac lattice via tuning solenoids, phasing cavities, & tracking with GPT IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Linac-to-Arc – Chromatic Compensation E =1.8 GeV 36.9103 Wed Jun 11 13:14:37 2008 OptiM - MAIN: - D:\IDS\Linacs_short\Linac1_fudg.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 72 Wed Jun 11 14:08:34 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc2_match.opt ‘Matching quads’ are invoked No 900 phase adv/cell maintained across the ‘junction’ Chromatic corrections needed – two pairs of sextupoles IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Linac-to-Arc - Chromatic Corrections initial uncorrected two families of sextupoles IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Mirror-symmetric ‘Droplet’ Arc – Optics 130 Tue Jun 10 21:14:41 2008 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E =1.2 GeV (bout = bin and aout = -ain , matched to the linacs) 2 cells out transition 2 cells out 10 cells in transition IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Multi-pass FFAG Arc Basic cell 2 or more passes through the same arc e.g. 5 GeV and 9 GeV NS-FFAG arc lattice design Achromatic basic cell with 90 horizontal phase advance Automatic matching between inward and outward bending cells Linear optics understood Need to incorporate sextupole and higher-order field components to accommodate higher momenta Basic cell example trajectories dispersion Vasiliy Morozov COSY Infinity IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Multi-pass FFAG Arc 300 60 simple closing of geometry Vasiliy Morozov simple closing of geometry when using similar cells r = 38.5 meters 300 60 C = 302 meters IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Proposed SDDS Exchange Format http://casa.jlab.org/external/2010/MuonAcceleration_MiniWorkshop/SDDS/draft.html ZGOUBI ELEGANT G4beamline ICOOL OptiM COSY-Infinity MAD-X GPT … Kevin Beard IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010

Summary Critical components of front-end linac modeled Initial design of the front-end linac simulated Design matching sections simulated RLA arc lattice + chromaticity compensation simulated Putting the pieces together for end-to-end simulations Multi-pass (2) FFAG Arcs? IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010