Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
©rlc L16-07Mar20111 PiN Diode PiN: N a >> N int (= N - ) & N int
Advertisements

Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Chapter 4 – Bipolar Junction Transistors (BJTs)
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
Modelling & Simulation of Semiconductor Devices
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
L30 01May031 Semiconductor Device Modeling and Characterization EE5342, Lecture 30 Spring 2003 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
スパイスモデル解析精度比較検証 デジタルトランジスタ 型名: DTC144EE 比較対象のスパイスモデル ビー・テクノロジーのモデル ⇒スパイス・パークからダウンロード ロームのモデル ⇒メーカー・サイトからダウンロード 比較対象のスパイスモデル ビー・テクノロジーのモデル ⇒スパイス・パークからダウンロード.
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Chapter 4 – Bipolar Junction Transistors (BJTs) Introduction
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 18
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 24 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

The npn Gummel-Poon Static Model RC ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B RBB ILC IBR B’ ILE IBF RE E ©rlc L24-04Apr2011

Gummel Poon npn Model Equations IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR )  {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } ©rlc L24-04Apr2011

Forward Gummel Data Sensitivities Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE vBCx = 0 c iC b d iB e iC(A),iB(A) vs. vBE(V) ©rlc L24-04Apr2011

Simple extraction of NF, NE from fg data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iB data iC data NEeff vs. vBEext ©rlc L24-04Apr2011

Simple extraction of IS, ISE from data Data set used IS = 10f ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext ©rlc L24-04Apr2011

Region (d) fg Data Sensitivities Region d - IS/BF, NF iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) ©rlc L24-04Apr2011

Simple extraction of BF from data Data set used BF = 100 Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A < iD < 3.53A Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC ©rlc L24-04Apr2011

Region (a) fg Data Sensitivities Region a - IKFIS, RB, RE, NF, VAR iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms }-1 If iC > IKF, then iC ~ [IS*IKF]1/2 exp(vBE/2NFVt)  (1-vBC/VAF-vBE/VAR ) ©rlc L24-04Apr2011

Region (c) fg Data Sensitivities Region c - IS/BF, NF, RB, RE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) ©rlc L24-04Apr2011

BJT Characterization Reverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms }-1 iE RC iB RE RB vBCx vBC vBE + - ©rlc L24-04Apr2011

Sample rg data for parameter extraction IS=10f Nr=1 Br=2 Isc=10p Nc=2 Ikr=.1m Vaf=100 Rc=5 Rb=100 iB data iE data iE, iB vs. vBCext ©rlc L24-04Apr2011

Reverse Gummel Data Sensitivities c Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC vBCx = 0 a d e iB b iE iE(A),iB(A) vs. vBC(V) ©rlc L24-04Apr2011

Region (b) rg Data Sensitivities Region b - IS, NR, VAF, RB, RC iE = bRIBR/QB = ISexp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ){IKR terms }-1 ©rlc L24-04Apr2011

Region (a) rg Data Sensitivities Region a - IKRIS, RB, RC, NR, VAF iE=bRIBR/QB~[ISIKR]1/2exp(vBC/2NRVt) (1-vBC/VAF-vBE/VAR ) ©rlc L24-04Apr2011

Region (e) rg Data Sensitivities Region e - ISC, NC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) ©rlc L24-04Apr2011

Region (d) rg Data Sensitivities Region d - BR, IS, NR iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) ©rlc L24-04Apr2011

Region (c) rg Data Sensitivities Region c - BR, IS, NR, RB, RC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) ©rlc L24-04Apr2011

References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ** Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print). ©rlc L24-04Apr2011