Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
EXAMPLE 5.1 OBJECTIVE Vbi = V
Advertisements

EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EXAMPLE 10.1 OBJECTIVE Solution
EXAMPLE 9.1 OBJECTIVE pn(xn) = 2.59  1014 cm3
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 12 – Spring 2011 Professor Ronald L. Carter
Semiconductor pn junctions. Built-in potential defined by equilibrium and levels N A, N D far from metallurgical junction  0 = V T ln[n n0 /n p0 ] =
L9 February 151 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2005 Professor Ronald L. Carter
EXAMPLE 4.1 OBJECTIVE Solution Comment
EE5342 – Semiconductor Device Modeling and Characterization Lecture 10 Spring 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
ECE 333 Linear Electronics
Recall-Lecture 4 Current generated due to two main factors
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Diodes Introduction Textbook CD
Recall-Lecture 4 Current generated due to two main factors
Professor Ronald L. Carter
7 pn Junction Diode: Small-signal Admittance
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 5 OUTLINE PN Junction Diodes I/V Capacitance Reverse Breakdown
Professor Ronald L. Carter
Recall-Lecture 4 Current generated due to two main factors
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Prediction and Accuracy
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 3 OUTLINE Semiconductor Basics (cont’d) PN Junction Diodes
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
Algebra: Graphs, Functions, and Linear Systems
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
Chapter 3 Solid-State Diodes and Diode Circuits
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ EE5342 – Semiconductor Device Modeling and Characterization Lecture 10 - Spring 2005 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L10 February 17

ln iD ln(IKF) ln[(IS*IKF) 1/2] ln(ISR) ln(IS) vD= Vext VKF Vext-Va=iD*Rs low level injection ln iD ln(IKF) Effect of Rs ln[(IS*IKF) 1/2] Effect of high level injection ln(ISR) Data ln(IS) vD= Vext recomb. current VKF L10 February 17

Interpreting a plot of log(iD) vs. Vd In the region where iD ~ ISeff(exp (Vd/(NeffVt)) - 1) For N = 1 and Vt = 25.852 mV, the slope of the plot of log(iD) vs. Vd is evaluated as {dlog(iD)/dVd} = log (e)/(NVt) = 16.799 decades/V = 1decade/59.526mV L10 February 17

Static Model Eqns. Parameter Extraction In the region where iD ~ ISeffexp (Vd/(NeffVt) ) {diD/dVd}/iD = d[ln(iD)]/dVd = 1/(NVt) so N ~ {dVd/d[ln(iD)]}/Vt  Neff, and ln(IS) ~ ln(iD) - Vd/(NVt)  ln(ISeff). Note: iD, Vt, etc., are normalized to 1A, 1V, resp. L10 February 17

I-V data and ISeff estimation L10 February 17

Hints for RS and NF parameter extraction In the region where vD > VKF. Defining vD = vDext - iD*RS and IHLI = [ISIKF]1/2. iD = IHLIexp (vD/2NVt) + ISRexp (vD/NRVt) diD/diD = 1  (iD/2NVt)(dvDext/diD - RS) + … Thus, for vD > VKF (highest voltages only) plot iD-1 vs. (dvDext/diD) to get a line with slope = (2NVt)-1, intercept = - RS/(2NVt) L10 February 17

RSeff and Neff estimation L10 February 17

Application of RS to lower current data In the region where vD < VKF. We still have vD = vDext - iD*RS and since. iD = ISexp (vD/NVt) + ISRexp (vD/NRVt) Try applying the derivatives for methods described to the variables iD and vD (using RS and vDext). You also might try comparing the N value from the regular N extraction procedure to the value from the previous slide. L10 February 17

Estimating Junction Capacitance Parameters Following L29 – EE 5340 Fall 2003 If CJ = CJO {1 – Va/VJ}-M Define y  {d[ln(CJ)]/dV}-1 A plot of y = yi vs. Va = vi has slope = -1/M, and intercept = VJ/MF L10 February 17

Derivatives Defined The central derivative is defined as (following Lecture 14 and 11) yi,Central = (vi+1 – vi-1)/(lnCi+1 – lnCi-1), with vi = (vi+1 + vi-1)/2 Equation A1.1 The Forward derivative (as applied to the theory in L11 and L14) is defined in this case as yi,Forward = (vi+1 – vi)/(lnCi+1 – lnCi), with vi,eff = (vi+1 + vi-1)/2 Equation A1.2 L10 February 17

Data calculations Table A1.1. Calculations of yi and vi for the Central and Forward derivatives for the data in Table 1. The yi and vi are defined in Equations A1.1 and A1.2. L10 February 17

y vs. Va plots Figure A1.3. The yi and vi values from the theory in L11 and L14 with associa-ted trend lines and slope, intercept and R^2 values. L10 February 17

Comments on the data interpretation It is clear the Central derivative gives the more reliable data as the R^2 value is larger. M is the reciprocal of the magnitude of the slope obtained by a least squares fit (linear) plot of yi vs. Vi VJ is the horizontal axis intercept (computed as the vertical axis intercept divided by the slope) Cj0 is the vertical axis intercept of a least squares fit of Cj-1/M vs. V (must use the value of V for which the Cj was computed). The computations will be shown later. The results of plotting Cj-1/M vs. V for the M value quoted below are shown in Figure A1.4 L10 February 17

Calculating the parameters (the data were generated using M = 0.389, thus we have a 0.77% error). VJ = yi(vi=0)/slope =1.6326/2.551 = 0.640 (the data were generated using fi = 0.648, thus we have a 1.24% error). Cj0 = 1.539E30^-.392 = 1.467 pF (the data were generated using Cj0 = 1.68 pF, thus we have a 12.6% error) L10 February 17

Linearized C-V plot Figure A1.4. A plot of the data for Cj^-1/M vs. Va using the M value determined for this data (M = 0.392). L10 February 17

Doping Profile The data were equal-ly spaced (DV=0.1V), the central differ-ence was used, for -7.4V ≤ V ≤ 0.4V, which for Cj = e/x, corresponds to a range of 2.81E-5 cm ≤ x ≤ 8.99E-5 cm. These data are shown. The trend line is also shown for a linear fit. Since R^2 = 1.000, a linear N(x) relationship can be assumed. L10 February 17

SPICE Diode Capacitance Pars.1 PARAMETER definition and units default value TT transit time sec 0.0 CJO zero-bias p-n capacitance farad 0.0 M p-n grading coefficient 0.5 FC forward-bias depletion capacitance coeff 0.5 VJ p-n potential volt 1.0 L10 February 17

SPICE Diode Capacitance Eqns.1 Cd = Ct + area·Cj Ct = transit time capacitance = TT·Gd Gd = DC conductance = area * d (Inrm Kinj + Irec Kgen)/dVd Kinj = high-injection factor Cj = junction capacitance IF: Vd < FC·VJ Cj = CJO*(1-Vd/VJ)^(-M) IF: Vd > FC·VJ Cj = CJO*(1-FC)^(-1-M)·(1-FC·(1+M)+M·Vd/VJ) L10 February 17

Junction Capacitance A plot of [Cj]-1/M vs. Vd has Slope = -[(CJO)1/M/VJ]-1 vertical axis intercept = [CJO]-2 horizontal axis intercept = VJ Cj-1/M CJO-1/M Vd VJ L10 February 17

Junction Width and Debye Length LD estimates the transition length of a step-junction DR (concentrations Na and Nd with Neff = NaNd/(Na +Nd)). Thus, For Va=0, & 1E13 < Na,Nd < 1E19 cm-3 13% < d < 28% => DA is OK L10 February 17

Junction Capacitance Adapted from Figure 1-16 in Text2 Cj = CJO/(1-Vd/VJ)^M Cj = CJO/(1-FC)^(1+M)* (1-FC·(1+M)+M·Vd/VJ) FC*VJ VJ L10 February 17

CV data and N(x) calculation L10 February 17