Spreadsheet Modeling & Decision Analysis

Slides:



Advertisements
Similar presentations
Solving LP Problems in a Spreadsheet
Advertisements

BU Decision Models Integer_LP1 Integer Optimization Summer 2013.
Operations Management Linear Programming Module B - Part 2
Linear Programming Using the Excel Solver
Managerial Decision Modeling with Spreadsheets
Chapter 6 Linear Programming: The Simplex Method
Example 14.3 Football Production at the Pigskin Company
Spreadsheet Modeling & Decision Analysis A Practical Introduction to Management Science 6 th edition Cliff T. Ragsdale © 2011 Cengage Learning. All Rights.
Spreadsheet Modeling and Decision Analysis, 3e, by Cliff Ragsdale. © 2001 South-Western/Thomson Learning. 2-1 Modeling and Solving LP Problems in a Spreadsheet.
Chapter 2: Introduction to Linear Programming
QM B Linear Programming
Computational Methods for Management and Economics Carla Gomes Module 4 Displaying and Solving LP Models on a Spreadsheet.
Spreadsheet Modeling & Decision Analysis:
Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize.
3 Components for a Spreadsheet Linear Programming Problem There is one cell which can be identified as the Target or Set Cell, the single objective of.
BUS 304 OPERATIONS RESEARCH
Introduction to Mathematical Programming OR/MA 504 Chapter 5 Integer Linear Programming.
Spreadsheet Modeling & Decision Analysis
Solver & Optimization Problems n An optimization problem is a problem in which we wish to determine the best values for decision variables that will maximize.
1 Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Management Science, 3e by Cliff Ragsdale.
Spreadsheet Modeling & Decision Analysis A Practical Introduction to Management Science 6 th edition Cliff T. Ragsdale © 2011 Cengage Learning. All Rights.
Spreadsheet Modeling of Linear Programming (LP). Spreadsheet Modeling There is no exact one way to develop an LP spreadsheet model. We will work through.
Spreadsheet Modeling & Decision Analysis:
Designing Spreadsheet LP Models
OPSM 301 Operations Management Class 21: Logistic Drivers: Facilities and Transportation Koç University Zeynep Aksin
Spreadsheet Modeling & Decision Analysis:
OPSM 301 Operations Management
Types of IP Models All-integer linear programs Mixed integer linear programs (MILP) Binary integer linear programs, mixed or all integer: some or all of.
Spreadsheet Modeling and Decision Analysis, 3e, by Cliff Ragsdale. © 2001 South-Western/Thomson Learning. 6-1 Integer Linear Programming Chapter 6.
Lecture 1 Modeling: Linear Programming I
OPSM 301 Operations Management Class 10: Introduction to Linear Programming Koç University Zeynep Aksin
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
Linear Programming last topic of the semester What is linear programming (LP)? Not about computer programming “Programming” means “planning” “Linear” refers.
Modeling and Solving LP Problems in a Spreadsheet Chapter 3 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Optimization I. © The McGraw-Hill Companies, Inc., 2004 Operations Management -- Prof. Juran2 Outline Basic Optimization: Linear programming –Graphical.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
3 Characteristics of an Optimization Problem General descriptionKPiller Illustration Decisions that must be made; represented by decision variables How.
Chapter 1 Introduction n Introduction: Problem Solving and Decision Making n Quantitative Analysis and Decision Making n Quantitative Analysis n Model.
Modeling and Solving LP Problems in a Spreadsheet Chapter 3 © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Spreadsheet Modeling & Decision Analysis A Practical Introduction to Management Science 5 th edition Cliff T. Ragsdale.
Math Programming Concept of Optimization (L.O. a ) Linear Programming Managerial Value of Information (L.O. d) Theory (L.O. b) Example Applications (L.O.
IT Applications for Decision Making. Operations Research Initiated in England during the world war II Make scientifically based decisions regarding the.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
1 Optimization Techniques Constrained Optimization by Linear Programming updated NTU SY-521-N SMU EMIS 5300/7300 Systems Analysis Methods Dr.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Managerial Decision Making Chapter 3 Modelling and Solving LP Problems in a Spreadsheet.
Modeling and Solving LP Problems in a Spreadsheet Chapter 3.
Appendix A with Woodruff Edits Linear Programming Using the Excel Solver Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Introduction to Optimization
Class 10: Introduction to Linear Programming
Linear Programming Models: Graphical and Computer Methods
A Multiperiod Production Problem
OPSM301 Spring 2012 Class11: LP Model Examples
Solver & Optimization Problems
Spreadsheet Modeling & Decision Analysis:
Introduction to linear programming (LP): Minimization
Chapter 7 Transportation, Assignment & Transshipment Problems
Spreadsheet Modeling & Decision Analysis
Optimization I.
Spreadsheet Modeling & Decision Analysis
Linear Programming Introduction.
Chapter 5 Transportation, Assignment, and Transshipment Problems
Modeling and Solving LP Problems in a Spreadsheet
Linear Programming Introduction.
Spreadsheet Modeling & Decision Analysis:
Spreadsheet Modeling & Decision Analysis:
Spreadsheet Modeling & Decision Analysis:
Integer Linear Programming
Modeling and Solving LP Problems in a Spreadsheet
Presentation transcript:

Spreadsheet Modeling & Decision Analysis A Practical Introduction to Management Science 5th edition Cliff T. Ragsdale

Modeling and Solving LP Problems in a Spreadsheet Chapter 3 Modeling and Solving LP Problems in a Spreadsheet

Introduction Solving LP problems graphically is only possible when there are two decision variables Few real-world LP have only two decision variables Fortunately, we can now use spreadsheets to solve LP problems

Spreadsheet Solvers The company that makes the Solver in Excel, Lotus 1-2-3, and Quattro Pro is Frontline Systems, Inc. Check out their web site: http://www.solver.com Other packages for solving MP problems: AMPL LINDO CPLEX MPSX

The Steps in Implementing an LP Model in a Spreadsheet 1. Organize the data for the model on the spreadsheet. 2. Reserve separate cells in the spreadsheet for each decision variable in the model. 3. Create a formula in a cell in the spreadsheet that corresponds to the objective function. 4. For each constraint, create a formula in a separate cell in the spreadsheet that corresponds to the left-hand side (LHS) of the constraint.

Let’s Implement a Model for the Blue Ridge Hot Tubs Example... MAX: 350X1 + 300X2 } profit S.T.: 1X1 + 1X2 <= 200 } pumps 9X1 + 6X2 <= 1566 } labor 12X1 + 16X2 <= 2880 } tubing X1, X2 >= 0 } nonnegativity

Implementing the Model See file Fig3-1.xls

How Solver Views the Model Target cell - the cell in the spreadsheet that represents the objective function Changing cells - the cells in the spreadsheet representing the decision variables Constraint cells - the cells in the spreadsheet representing the LHS formulas on the constraints

Let’s go back to Excel and see how Solver works...

Goals For Spreadsheet Design Communication - A spreadsheet's primary business purpose is communicating information to managers. Reliability - The output a spreadsheet generates should be correct and consistent. Auditability - A manager should be able to retrace the steps followed to generate the different outputs from the model in order to understand and verify results. Modifiability - A well-designed spreadsheet should be easy to change or enhance in order to meet dynamic user requirements.

Spreadsheet Design Guidelines - I Organize the data, then build the model around the data. Do not embed numeric constants in formulas. Things which are logically related should be physically related. Use formulas that can be copied. Column/rows totals should be close to the columns/rows being totaled.

Spreadsheet Design Guidelines - II The English-reading eye scans left to right, top to bottom. Use color, shading, borders and protection to distinguish changeable parameters from other model elements. Use text boxes and cell notes to document various elements of the model.

Make vs. Buy Decisions: The Electro-Poly Corporation Electro-Poly is a leading maker of slip-rings. A $750,000 order has just been received. Model 1 Model 2 Model 3 Number ordered 3,000 2,000 900 Hours of wiring/unit 2 1.5 3 Hours of harnessing/unit 1 2 1 Cost to Make $50 $83 $130 Cost to Buy $61 $97 $145 The company has 10,000 hours of wiring capacity and 5,000 hours of harnessing capacity.

Defining the Decision Variables M1 = Number of model 1 slip rings to make in-house M2 = Number of model 2 slip rings to make in-house M3 = Number of model 3 slip rings to make in-house B1 = Number of model 1 slip rings to buy from competitor B2 = Number of model 2 slip rings to buy from competitor B3 = Number of model 3 slip rings to buy from competitor

Defining the Objective Function Minimize the total cost of filling the order. MIN: 50M1+ 83M2+ 130M3+ 61B1+ 97B2+ 145B3

Defining the Constraints Demand Constraints M1 + B1 = 3,000 } model 1 M2 + B2 = 2,000 } model 2 M3 + B3 = 900 } model 3 Resource Constraints 2M1 + 1.5M2 + 3M3 <= 10,000 } wiring 1M1 + 2.0M2 + 1M3 <= 5,000 } harnessing Nonnegativity Conditions M1, M2, M3, B1, B2, B3 >= 0

Implementing the Model See file Fig3-17.xls

An Investment Problem: Retirement Planning Services, Inc. A client wishes to invest $750,000 in the following bonds. Years to Company Return Maturity Rating Acme Chemical 8.65% 11 1-Excellent DynaStar 9.50% 10 3-Good Eagle Vision 10.00% 6 4-Fair Micro Modeling 8.75% 10 1-Excellent OptiPro 9.25% 7 3-Good Sabre Systems 9.00% 13 2-Very Good

Investment Restrictions No more than 25% can be invested in any single company. At least 50% should be invested in long-term bonds (maturing in 10+ years). No more than 35% can be invested in DynaStar, Eagle Vision, and OptiPro.

Defining the Decision Variables X1 = amount of money to invest in Acme Chemical X2 = amount of money to invest in DynaStar X3 = amount of money to invest in Eagle Vision X4 = amount of money to invest in MicroModeling X5 = amount of money to invest in OptiPro X6 = amount of money to invest in Sabre Systems

Defining the Objective Function Maximize the total annual investment return: MAX: .0865X1+ .095X2+ .10X3+ .0875X4+ .0925X5+ .09X6

Defining the Constraints Total amount is invested X1 + X2 + X3 + X4 + X5 + X6 = 750,000 No more than 25% in any one investment Xi <= 187,500, for all i 50% long term investment restriction. X1 + X2 + X4 + X6 >= 375,000 35% Restriction on DynaStar, Eagle Vision, and OptiPro. X2 + X3 + X5 <= 262,500 Nonnegativity conditions Xi >= 0 for all i

Implementing the Model See file Fig3-20.xls

A Transportation Problem: Tropicsun Mt. Dora 1 Eustis 2 Clermont 3 Ocala 4 Orlando 5 Leesburg 6 Distances (in miles) Capacity Supply 275,000 400,000 300,000 225,000 600,000 200,000 Groves Processing Plants 21 50 40 35 30 22 55 25 20

Defining the Decision Variables Xij = # of bushels shipped from node i to node j Specifically, the nine decision variables are: X14 = # of bushels shipped from Mt. Dora (node 1) to Ocala (node 4) X15 = # of bushels shipped from Mt. Dora (node 1) to Orlando (node 5) X16 = # of bushels shipped from Mt. Dora (node 1) to Leesburg (node 6) X24 = # of bushels shipped from Eustis (node 2) to Ocala (node 4) X25 = # of bushels shipped from Eustis (node 2) to Orlando (node 5) X26 = # of bushels shipped from Eustis (node 2) to Leesburg (node 6) X34 = # of bushels shipped from Clermont (node 3) to Ocala (node 4) X35 = # of bushels shipped from Clermont (node 3) to Orlando (node 5) X36 = # of bushels shipped from Clermont (node 3) to Leesburg (node 6)

Defining the Objective Function Minimize the total number of bushel-miles. MIN: 21X14 + 50X15 + 40X16 + 35X24 + 30X25 + 22X26 + 55X34 + 20X35 + 25X36

Defining the Constraints Capacity constraints X14 + X24 + X34 <= 200,000 } Ocala X15 + X25 + X35 <= 600,000 } Orlando X16 + X26 + X36 <= 225,000 } Leesburg Supply constraints X14 + X15 + X16 = 275,000 } Mt. Dora X24 + X25 + X26 = 400,000 } Eustis X34 + X35 + X36 = 300,000 } Clermont Nonnegativity conditions Xij >= 0 for all i and j

Implementing the Model See file Fig3-24.xls

A Blending Problem: The Agri-Pro Company Agri-Pro has received an order for 8,000 pounds of chicken feed to be mixed from the following feeds. Nutrient Feed 1 Feed 2 Feed 3 Feed 4 Corn 30% 5% 20% 10% Grain 10% 3% 15% 10% Minerals 20% 20% 20% 30% Cost per pound $0.25 $0.30 $0.32 $0.15 Percent of Nutrient in The order must contain at least 20% corn, 15% grain, and 15% minerals.

Defining the Decision Variables X1 = pounds of feed 1 to use in the mix X2 = pounds of feed 2 to use in the mix X3 = pounds of feed 3 to use in the mix X4 = pounds of feed 4 to use in the mix

Defining the Objective Function Minimize the total cost of filling the order. MIN: 0.25X1 + 0.30X2 + 0.32X3 + 0.15X4

Defining the Constraints Produce 8,000 pounds of feed X1 + X2 + X3 + X4 = 8,000 Mix consists of at least 20% corn (0.3X1 + 0.5X2 + 0.2X3 + 0.1X4)/8000 >= 0.2 Mix consists of at least 15% grain (0.1X1 + 0.3X2 + 0.15X3 + 0.1X4)/8000 >= 0.15 Mix consists of at least 15% minerals (0.2X1 + 0.2X2 + 0.2X3 + 0.3X4)/8000 >= 0.15 Nonnegativity conditions X1, X2, X3, X4 >= 0

A Comment About Scaling Notice the coefficient for X2 in the ‘corn’ constraint is 0.05/8000 = 0.00000625 As Solver runs, intermediate calculations are made that make coefficients larger or smaller. Storage problems may force the computer to use approximations of the actual numbers. Such ‘scaling’ problems sometimes prevents Solver from being able to solve the problem accurately. Most problems can be formulated in a way to minimize scaling errors...

Re-Defining the Decision Variables X1 = thousands of pounds of feed 1 to use in the mix X2 = thousands of pounds of feed 2 to use in the mix X3 = thousands of pounds of feed 3 to use in the mix X4 = thousands of pounds of feed 4 to use in the mix

Re-Defining the Objective Function Minimize the total cost of filling the order. MIN: 250X1 + 300X2 + 320X3 + 150X4

Re-Defining the Constraints Produce 8,000 pounds of feed X1 + X2 + X3 + X4 = 8 Mix consists of at least 20% corn (0.3X1 + 0.5X2 + 0.2X3 + 0.1X4)/8 >= 0.2 Mix consists of at least 15% grain (0.1X1 + 0.3X2 + 0.15X3 + 0.1X4)/8 >= 0.15 Mix consists of at least 15% minerals (0.2X1 + 0.2X2 + 0.2X3 + 0.3X4)/8 >= 0.15 Nonnegativity conditions X1, X2, X3, X4 >= 0

Scaling: Before and After Largest constraint coefficient was 8,000 Smallest constraint coefficient was 0.05/8 = 0.00000625. After: Largest constraint coefficient is 8 Smallest constraint coefficient is 0.05/8 = 0.00625. The problem is now more evenly scaled!

The Assume Linear Model Option The Solver Options dialog box has an option labeled “Assume Linear Model”. This option makes Solver perform some tests to verify that your model is in fact linear. These test are not 100% accurate & may fail as a result of a poorly scaled model. If Solver tells you a model isn’t linear when you know it is, try solving it again. If that doesn’t work, try re-scaling your model.

Implementing the Model See file Fig3-28.xls

A Production Planning Problem: The Upton Corporation Upton is planning the production of their heavy-duty air compressors for the next 6 months. 1 2 3 4 5 6 Unit Production Cost $240 $250 $265 $285 $280 $260 Units Demanded 1,000 4,500 6,000 5,500 3,500 4,000 Maximum Production 4,000 3,500 4,000 4,500 4,000 3,500 Minimum Production 2,000 1,750 2,000 2,250 2,000 1,750 Month Beginning inventory = 2,750 units Safety stock = 1,500 units Unit carrying cost = 1.5% of unit production cost Maximum warehouse capacity = 6,000 units

Defining the Decision Variables Pi = number of units to produce in month i, i=1 to 6 Bi = beginning inventory month i, i=1 to 6

Defining the Objective Function Minimize the total cost production & inventory costs. MIN: 240P1+250P2+265P3+285P4+280P5+260P6 + 3.6(B1+B2)/2 + 3.75(B2+B3)/2 + 3.98(B3+B4)/2 + 4.28(B4+B5)/2 + 4.20(B5+ B6)/2 + 3.9(B6+B7)/2 Note: The beginning inventory in any month is the same as the ending inventory in the previous month.

Defining the Constraints - I Production levels 2,000 <= P1 <= 4,000 } month 1 1,750 <= P2 <= 3,500 } month 2 2,000 <= P3 <= 4,000 } month 3 2,250 <= P4 <= 4,500 } month 4 2,000 <= P5 <= 4,000 } month 5 1,750 <= P6 <= 3,500 } month 6

Defining the Constraints - II Ending Inventory (EI = BI + P - D) 1,500 < B1 + P1 - 1,000 < 6,000 } month 1 1,500 < B2 + P2 - 4,500 < 6,000 } month 2 1,500 < B3 + P3 - 6,000 < 6,000 } month 3 1,500 < B4 + P4 - 5,500 < 6,000 } month 4 1,500 < B5 + P5 - 3,500 < 6,000 } month 5 1,500 < B6 + P6 - 4,000 < 6,000 } month 6

Defining the Constraints - III Beginning Balances B1 = 2750 B2 = B1 + P1 - 1,000 B3 = B2 + P2 - 4,500 B4 = B3 + P3 - 6,000 B5 = B4 + P4 - 5,500 B6 = B5 + P5 - 3,500 B7 = B6 + P6 - 4,000 Notice that the Bi can be computed directly from the Pi. Therefore, only the Pi need to be identified as changing cells.

Implementing the Model See file Fig3-31.xls

A Multi-Period Cash Flow Problem: The Taco-Viva Sinking Fund - I Taco-Viva needs a sinking fund to pay $800,000 in building costs for a new restaurant in the next 6 months. Payments of $250,000 are due at the end of months 2 and 4, and a final payment of $300,000 is due at the end of month 6. The following investments may be used. Investment Available in Month Months to Maturity Yield at Maturity A 1, 2, 3, 4, 5, 6 1 1.8% B 1, 3, 5 2 3.5% C 1, 4 3 5.8% D 1 6 11.0%

Summary of Possible Cash Flows Investment 1 2 3 4 5 6 7 A1 -1 1.018 B1 -1 <_____> 1.035 C1 -1 <_____> <_____> 1.058 D1 -1 <_____> <_____> <_____> <_____> <_____> 1.11 A2 -1 1.018 A3 -1 1.018 B3 -1 <_____> 1.035 A4 -1 1.018 C4 -1 <_____> <_____> 1.058 A5 -1 1.018 B5 -1 <_____> 1.035 A6 -1 1.018 Req’d Payments $0 $0 $250 $0 $250 $0 $300 (in $1,000s) Cash Inflow/Outflow at the Beginning of Month

Defining the Decision Variables Ai = amount (in $1,000s) placed in investment A at the beginning of month i=1, 2, 3, 4, 5, 6 Bi = amount (in $1,000s) placed in investment B at the beginning of month i=1, 3, 5 Ci = amount (in $1,000s) placed in investment C at the beginning of month i=1, 4 Di = amount (in $1,000s) placed in investment D at the beginning of month i=1

Defining the Objective Function Minimize the total cash invested in month 1. MIN: A1 + B1 + C1 + D1

Defining the Constraints Cash Flow Constraints 1.018A1 – 1A2 = 0 } month 2 1.035B1 + 1.018A2 – 1A3 – 1B3 = 250 } month 3 1.058C1 + 1.018A3 – 1A4 – 1C4 = 0 } month 4 1.035B3 + 1.018A4 – 1A5 – 1B5 = 250 } month 5 1.018A5 –1A6 = 0 } month 6 1.11D1 + 1.058C4 + 1.035B5 + 1.018A6 = 300 } month 7 Nonnegativity Conditions Ai, Bi, Ci, Di >= 0, for all i

Implementing the Model See file Fig3-35.xls

Risk Management: The Taco-Viva Sinking Fund - II Assume the CFO has assigned the following risk ratings to each investment on a scale from 1 to 10 (10 = max risk) Investment Risk Rating A 1 B 3 C 8 D 6 The CFO wants the weighted average risk to not exceed 5.

Defining the Constraints Risk Constraints 1A1 + 3B1 + 8C1 + 6D1 < 5 A1 + B1 + C1 + D1 } month 1 1A2 + 3B1 + 8C1 + 6D1 < 5 A2 + B1 + C1 + D1 } month 2 1A3 + 3B3 + 8C1 + 6D1 < 5 A3 + B3 + C1 + D1 } month 3 1A4 + 3B3 + 8C4 + 6D1 < 5 A4 + B3 + C4 + D1 } month 4 1A5 + 3B5 + 8C4 + 6D1 < 5 A5 + B5 + C4 + D1 } month 5 1A6 + 3B5 + 8C4 + 6D1 < 5 A6 + B5 + C4 + D1 } month 6

An Alternate Version of the Risk Constraints Equivalent Risk Constraints -4A1 – 2B1 + 3C1 + 1D1 < 0 } month 1 -2B1 + 3C1 + 1D1 – 4A2 < 0 } month 2 3C1 + 1D1 – 4A3 – 2B3 < 0 } month 3 1D1 – 2B3 – 4A4 + 3C4 < 0 } month 4 1D1 + 3C4 – 4A5 – 2B5 < 0 } month 5 1D1 + 3C4 – 2B5 – 4A6 < 0 } month 6 Note that each coefficient is equal to the risk factor for the investment minus 5 (the max. allowable weighted average risk).

Implementing the Model See file Fig3-38.xls

Data Envelopment Analysis (DEA): Steak & Burger Steak & Burger needs to evaluate the performance (efficiency) of 12 units. Outputs for each unit (Oij) include measures of: Profit, Customer Satisfaction, and Cleanliness Inputs for each unit (Iij) include: Labor Hours, and Operating Costs The “Efficiency” of unit i is defined as follows: Weighted sum of unit i’s outputs = Weighted sum of unit i’s inputs

Defining the Decision Variables wj = weight assigned to output j vj = weight assigned to input j A separate LP is solved for each unit, allowing each unit to select the best possible weights for itself.

Defining the Objective Function Maximize the weighted output for unit i : MAX:

Defining the Constraints Efficiency cannot exceed 100% for any unit Sum of weighted inputs for unit i must equal 1 Nonnegativity Conditions wj, vj >= 0, for all j

Important Point When using DEA, output variables should be expressed on a scale where “more is better” and input variables should be expressed on a scale where “less is better”.

Implementing the Model See file Fig3-41.xls

Analyzing The Solution See file Fig3-48.xls

End of Chapter 3