Gravitational wave interferometer OPTICS

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
24. June 2004 Andreas Freise Status of VIRGO A. Freise For the Virgo Collaboration European Gravitational Observatory SPIE Glasgow 2004.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Hiro Yamamoto LLO April 3, 2014 LIGO-G Core Optics related loss hierarchy of aLIGO Hiro Yamamoto LIGO/Caltech Introduction Loss related to geometry.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Optics of GW detectors Jo van den Brand
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
rd ILIAS-GW annual general meeting 1 VIRGO Commissioning progress J. Marque (EGO)
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Use ofSiesta in VIRGO commissioning Lisa Barsotti University of Pisa – INFN Pisa For the Virgo collaboration Caltech, December 19th 2003.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Interferometer Control Matt Evans …talk mostly taken from…
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
1 1.ISC scope and activities 2.Initial Virgo status 3.Design requirements 4.Reference solution and design status 5.Plans toward completion 6.Technical.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
1 Noise sources at high frequency in Virgo E. Tournefier (LAPP-CNRS) ILAS WG1 meeting, Hannover December 12 th,2005 Recycled ITF sensitivities Noise sources.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
1 GEO Simulation Workshop, October 25 th 2007 M Laval The Virgo FFT code: DarkF Mikael Laval CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice,
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
1 Advanced Virgo Workshop 14/06/2007 M Laval Fabry Perot cavity for LG and Flat modes Mikael Laval (OCA/ARTEMIS) Outlines: Tools: The optical simulation.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
1st Advanced Virgo Review – November 3-4, 2008 – L. Pinard 1 Mirrors Sub-System Overview  Introduction  Scope of the subsystem, main tasks  Substrates.
Lisa Barsotti - University and INFN Pisa – on behalf of the Virgo Collaboration CASCINA - January 24 th, 2005 ILIAS  Locking of Full Virgo Status of VIRGO.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
The status of VIRGO Edwige Tournefier (LAPP-Annecy ) for the VIRGO Collaboration HEP2005, 21st- 27th July 2005 The VIRGO experiment and detection of.
1 Virgo Commissioning Status WG1 meeting Potsdam, 21 st July 2006.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
LIGO-G Z March 2007, LSC meeting, Osamu Miyakawa 1 Osamu Miyakawa Hiroaki Yamamoto March 21, 2006 LSC meeting Modeling of AdLIGO arm lock acquisition.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Jean-Yves Vinet CNRS-ARTEMIS Observatoire de la Côte d’Azur Effects In cavity mirrors.
1 Frequency Noise in Virgo by Matt Evans. 2 The Actors  Noise Sources  Input Mode Cleaner length noise  Sensing noise on IMC lock  Frequency Servo.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
The VIRGO detection system
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
1 The status of VIRGO E. Tournefier LAPP(Annecy)-IN2P3-CNRS Journées SF2A, Strasbourg 27 juin – 1er juillet 2005 The VIRGO experiment The commissioning.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
Interferometer configurations for Gravitational Wave Detectors
Characterization of Advanced LIGO Core Optics
Technologies of Gravitational Wave Detection
A look at interferometer topologies that use reflection gratings
Daniel Sigg, Commissioning Meeting, 11/11/16
The Proposed Holographic Noise Experiment
Nergis Mavalvala Aspen January 2005
Laboratoire des Matériaux Avancés - Lyon
Commissioning the LIGO detectors
Virgo – Injection SYStem
Homodyne or heterodyne Readout for Advanced LIGO?
Ponderomotive Squeezing Quantum Measurement Group
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Modeling of Advanced LIGO with Melody
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
Heavy IMC end payload requirements
Some features of NV. Vincent Loriette.
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006 Fabry-Perot cavity in practice Rules for optical design Optical performances

Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology

VIRGO optical design Fabry-Perot cavity to detect gravitational wave Input <<Mode Cleaner>> to filter out input beam jitter and select mode L=144m Output Mode Cleaner to filter output mode Recycling mirror to reduce shot noise Suspended mirrors to cancel seismic noise L=3 km Long arms to divide mirror and suspension thermal noise Michelson configuration at dark fringe + servo loop to cancel laser frequency noise Slave laser Master laser

1. Fabry-Perot cavity: A. parameters SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors REFLECTION TRANSMISSION Can we understand these shapes?

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Ein Esto Etrans Eref Mirror 1 Mirror 2 Ert = r1 P-1 r2 P Esto

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Ert = r1 P-1 r2 P Esto Round trip “losses”

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Ert = r1 P-1 r2 P Esto Period: Free spectral range

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors RESONANCE CONDITION Recycling gain

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors RESONANCE CONDITION Suppose now Cavity pole

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Finesse

1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors on resonance reflectivity

1. Fabry-Perot cavity: A. parameters 2nd order In T+P 1st order in T+P Finesse On resonance reflection transmission

1. Fabry-Perot cavity: A. parameters SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors T1 = 12% T2 = 5% L = 0 (finesse = 35) REFLECTION TRANSMISSION

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Optimal coupling Over-coupling Under-coupling

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Frequency/Length tuning

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Ein Esto Etrans Eref z axis Mirror 1 Mirror 2 Ert = r1 P-1 r2 P Esto Ein(x,y) ; Esto(x,y) ; r1, P, r2 are operators

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Wavefront matching: Esto(x,y) = k Ein(x,y) (k complex number) Esto Ein Superpose angles and lateral drifts of incoming and resonating beam <<ALIGNMENT ACTIVITY>>

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Wavefront matching: Esto(x,y) = k Ein(x,y) (k complex number) Ein Esto Superpose beam positions and beam widths <<MATCHING ACTIVITY>>

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Definition of beam coupling: Round trip coupling losses: Too small mirror diameters “clipping” imperfect surface: local defects, random figures

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Definition of stability: Definition of stability in case of perfect surface figures:

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer Charles Fabry (1867-1945) Alfred Perot (1863-1925) Amédée Jobin (mirror manufacturer) (1861-1945) Gustave Yvon (>1911) Marseille – beginning of 20th century “Les franges des lames minces argentées”, Annales de Chimie et de Physique, 7e série, t12, 12 décembre 1897 “A taste of Fabry and Perot’s Discoveries, Physica Scripta, T86, 76-82, 2000

1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer

1. Fabry-Perot cavity: C. measurement Phase modulated laser: SB- C SB+ m phase modulation index fm modulation frequency

1. Fabry-Perot cavity: C. measurement error signal: Does not provide information about frequency behavior once locked

1. Fabry-Perot cavity: C. measurement Modulated laser + measurement line: SB- C SB+ n phase modulation index fn modulation frequency This pole f << FSR, f ≠ fm

Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology

2. Optical design: A. mirror transmissions Fabry-Perot cavity with Rmax transmissions as end mirrors Virgo mirrors: LRT ~500 ppm, Gcavity ~ 32  reflectivity defect 1.5% Was estimated 1-5 % at design Have as much as possible power on beamsplitter Match “losses” of cavities with recycling mirror Was estimated 8 % at design (5.5 % recent refit)

2. Optical design: B. dark fringe Michelson simple : laser Pin BS Pmax, Pmin = Pout On black and white fringes Pout

2. Optical design: C. Mode Cleaners Input <<Mode Cleaner>> to filter out input beam jitter and select mode L=3 km L=144m Slave laser Master laser Output Mode Cleaner to filter output mode

Detection Beam Photodiodes on Detection Bench Output Mode Cleaner on Suspended Bench Output Mode-Cleaner Beam

Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology

Measured optical parameters Losses in input Mode Cleaner? Arm finesses? Slave laser Master laser 1 W F = 49±0.5 F = 51 ±1 Recycling gain? 16.7 W 7.1 W Gcarrier = 30-35 (exp. 50) GSB ~ 20 (exp. 36) T=10% 1 – C < 10-4 1 – C = 3.10-3 (mean) III. Optical performances

Absorption Photothermal Deflection System Scatterometer CASI 400x400mm Mirror metrology Micromap 400x400 mm (local defects) Before and/or after the coating process, maps are measured: Mirror surface map (modified profilometer) bulk and coating absorption map (“mirage” bench) scatter map (commercial instrument) transmission map (commercial instrument) local defects measurements birefringency reproducibility 0.4 nm; step 0.35 mm resolution 30 ppb/cm // 20 ppb resolution of a few ppm transmission map Phase shift interferometer Instruments: ESPCI, Paris Coating, 140 m2 room class 1: LMA, Lyon The VIRGO large mirrors: a challenge for low loss coatings, CQG 2004, 21

Surface maps Good quality silica Good polishing Ex: a large flat mirror Good quality silica Good polishing Control of coating deposition (DIBS) with no pollutants - Surface correction Diam 35 cm Rms 2.3 nm p-p 11.5 nm III. Optical performances

Optical simulation Check out cavity visibility (total losses) Check out expected recycling gain, for varying radii of curvature Check out expected contrast defect Check out modulation frequency Improve interferometer parameters… TWO optical programs: One that propagates wavefront with FFT One that decomposes beams on TEM HG(m,n) base III. Optical performances

Optical program: typical results (Modal simulation) Scalar defects Maps Maps+thermal Opt mod index 0.068 0.172±0.001 0.215 ±0.001 Opt demod phase 2 ±0 17 ±1 Finesse N 49.26 49.1 ±0.2 49.3 ±0.2 Finesse W 49.79 49.6 ±0.2 49.7 ±0.2 dF/F [%] 0.27 0.23 ±0.12 0.24 ±0.12 Asymmetry [%] 1.05 1.00 ±0.3 2.78 ±0.5 Stored power N [kW] 15.38 10.82 ±0 11.15 ±0 Lost power N [W] 0.23 4.11 ±1 3.70 ±1 Surtension N 31.37 31.18 ±0.02 31.15 ±0.02 Stored power W [kW] 15.55 10.91 ±0 11.27 ±0.3 Lost power W [W] 0.19 6.05 ±0.02 5.85 ±0.04 Surtension W 31.70 31.42 ±0.01 31.48 ±0.1 Carrier power on BS [W] 978.5 684.5 ±0.5 725.1 ±2 Sideband power on BS [W] 1.70 8.56 ±0.1 10.9 ±0.2 Reflected carrier [W] 17.84 8.42 ±0.01 9.82 ±0.08 Reflected sb [W] 0.027 0.24 ±0 0.26 ±0.01 CITF surtension Carrier 49.04 34.74 ±0.03 37.10 ±0.08 CITF surtension SB 36.49 29.01 ±0.02 24.0 ±0.1 Transmitted (detected) carrier [mW] 0.064 (0.064) 359 ±6 (1.6 ±0) 324 ±40 (3.5 ±0.1) Transmitted (detected) sb [mW] 18.7 (17.9) 93.0 ±0.8 (70.0 ±1) 125 ±2 (100 ±2) Sensitivity [*1E-23] 2.48 2.87 ±0.01 2.96 ±0.02

Virgo simulation with surface maps and with an incoming field of 20W Example: Virgo simulation with surface maps and with an incoming field of 20W Contrast defect= 0.94% North arm amplification = 31.65 West arm amplification = 32.06 Recycling gain = 34.56 III. Optical performances

Fabry-Perot cavity transfer function measurements Details at FFSR Fit values with 95% confidence interval: fp = 479 +/- 3.3 Hz fz = -177 +/- 2.2 Hz FSR = 1044039 +/- 2.2 Hz L = 143.573326 +/- 30 mm Error bars: from measurement errors, Not for constant biases. (fit both real and imaginary parts simultaneously) III. Optical performances

Input Mode Cleaner Losses Roud-trip losses: Computed from mirror maps: 115 ppm From measurements: 846 +/- 5 ppm T = 5.7 ppm Mirror transmission measurements + transfer function details measurements => Mode mismatching 17% => Cavity transmissitivity for TEM00 83% (september 2005) T=2457 ppm T=2427 ppm III. Optical performances

Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology