Hashing Chapter 11.

Slides:



Advertisements
Similar presentations
©Silberschatz, Korth and Sudarshan12.1Database System Concepts Chapter 12: Part C Part A:  Index Definition in SQL  Ordered Indices  Index Sequential.
Advertisements

Hash-Based Indexes Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
Hash-based Indexes CS 186, Spring 2006 Lecture 7 R &G Chapter 11 HASH, x. There is no definition for this word -- nobody knows what hash is. Ambrose Bierce,
1 Hash-Based Indexes Module 4, Lecture 3. 2 Introduction As for any index, 3 alternatives for data entries k* : – Data record with key value k – –Choice.
Hash-Based Indexes The slides for this text are organized into chapters. This lecture covers Chapter 10. Chapter 1: Introduction to Database Systems Chapter.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
Quick Review of Apr 10 material B+-Tree File Organization –similar to B+-tree index –leaf nodes store records, not pointers to records stored in an original.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
CPSC 404, Laks V.S. Lakshmanan1 Hash-Based Indexes Chapter 11 Ramakrishnan & Gehrke (Sections )
Indexing (Cont.) These slides are a modified version of the slides of the book “Database System Concepts” (Chapter 12), 5th Ed., McGraw-Hill,McGraw-Hill.
Chapter 11 Indexing and Hashing (2) Yonsei University 2 nd Semester, 2013 Sanghyun Park.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 11: Indexing.
Chapter 11 (3 rd Edition) Hash-Based Indexes Xuemin COMP9315: Database Systems Implementation.
©Silberschatz, Korth and Sudarshan12.1Database System Concepts Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree.
CST203-2 Database Management Systems Lecture 7. Disadvantages on index structure: We must access an index structure to locate data, or must use binary.
Hash Indexes: Chap. 11 CS634 Lecture 6, Feb
Index tuning Hash Index. overview Introduction Hash-based indexes are best for equality selections. –Can efficiently support index nested joins –Cannot.
ICS 421 Spring 2010 Indexing (2) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 2/23/20101Lipyeow Lim.
B-trees - Hashing. 11.2Database System Concepts Review: B-trees and B+-trees Multilevel, disk-aware, balanced index methods primary or secondary dense.
1 Hash-Based Indexes Yanlei Diao UMass Amherst Feb 22, 2006 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
B+-tree and Hash Indexes
1 Hash-Based Indexes Chapter Introduction  Hash-based indexes are best for equality selections. Cannot support range searches.  Static and dynamic.
Quick Review of Apr 15 material Overflow –definition, why it happens –solutions: chaining, double hashing Hash file performance –loading factor –search.
1 Hash-Based Indexes Chapter Introduction : Hash-based Indexes  Best for equality selections.  Cannot support range searches.  Static and dynamic.
Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Hashing.
Computing & Information Sciences Kansas State University Friday, 24 Oct 2008CIS 560: Database System Concepts Lecture 23 of 42 Friday, 24 October 2008.
©Silberschatz, Korth and Sudarshan12.1Database System Concepts Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree.
12.1 Chapter 12: Indexing and Hashing Spring 2009 Sections , , Problems , 12.7, 12.8, 12.13, 12.15,
Hashing and Hash-Based Index. Selection Queries Yes! Hashing  static hashing  dynamic hashing B+-tree is perfect, but.... to answer a selection query.
1 Database Systems ( 資料庫系統 ) November 8, 2004 Lecture #9 By Hao-hua Chu ( 朱浩華 )
Indexing and Hashing By Dr.S.Sridhar, Ph.D.(JNUD), RACI(Paris, NICE), RMR(USA), RZFM(Germany) DIRECTOR ARUNAI ENGINEERING COLLEGE TIRUVANNAMALAI.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11 Modified by Donghui Zhang Jan 30, 2006.
Introduction to Database, Fall 2004/Melikyan1 Hash-Based Indexes Chapter 10.
1.1 CS220 Database Systems Indexing: Hashing Slides courtesy G. Kollios Boston University via UC Berkeley.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Indexed Sequential Access Method.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 10.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Module D: Hashing.
B-Trees, Part 2 Hash-Based Indexes R&G Chapter 10 Lecture 10.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 11: Indexing.
COP Introduction to Database Structures
Dynamic Hashing (Chapter 12)
Hash-Based Indexes Chapter 11
Chapter 11: Indexing and Hashing
Database Management Systems (CS 564)
Dynamic Hashing.
Indexing And Hashing.
Chapter 11: Indexing and Hashing
Introduction to Database Systems
Hashing Chapter 11.
External Memory Hashing
Tree- and Hash-Structured Indexes
CS222: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hash-Based Indexes R&G Chapter 10 Lecture 18
Hash-Based Indexes Chapter 10
B-Trees, Part 2 Hash-Based Indexes
Indexing and Hashing Basic Concepts Ordered Indices
CS222P: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hashing.
Hash-Based Indexes Chapter 11
Index tuning Hash Index.
Database Systems (資料庫系統)
LINEAR HASHING E0 261 Jayant Haritsa Computer Science and Automation
2018, Spring Pusan National University Ki-Joune Li
Module 12a: Dynamic Hashing
Index tuning Hash Index.
Hash-Based Indexes Chapter 11
Chapter 11 Instructor: Xin Zhang
Tree- and Hash-Structured Indexes
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #07 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Presentation transcript:

Hashing Chapter 11

Static Hashing A bucket is a unit of storage containing one or more records (a bucket is typically a disk block). In a hash file organization we obtain the bucket of a record directly from its search-key value using a hash function. Hash function h is a function from the set of all search-key values K to the set of all bucket addresses B. Hash function is used to locate records for access, insertion as well as deletion. Records with different search-key values may be mapped to the same bucket; thus entire bucket has to be searched sequentially to locate a record.

Example of Hash File Organization Hash file organization of instructor file, using dept_name as key (See figure in next slide.) There are 10 buckets, The binary representation of the ith character is assumed to be the integer i. The hash function returns the sum of the binary representations of the characters modulo 10 E.g. h(Music) = 1 h(History) = 2 h(Physics) = 3 h(Elec. Eng.) = 3

Example of Hash File Organization Hash file organization of instructor file, using dept_name as key.

Hash Functions Worst hash function maps all search-key values to the same bucket; The access is time proportional to the number of search-key values in the file. An ideal hash function is uniform, i.e., each bucket is assigned the same number of search-key values from the set of all possible values. Ideal hash function is random, so each bucket will have the same number of records assigned to it irrespective of the actual distribution of search-key values in the file. Typical hash functions perform computation on the internal binary representation of the search-key. For example, for a string search-key, the binary representations of all the characters in the string could be added and the sum modulo the number of buckets could be returned.

Handling of Bucket Overflows Bucket overflow can occur because of Insufficient buckets Skew in distribution of records. This can occur due to two reasons: multiple records have same search-key value chosen hash function produces non-uniform distribution of key values Although the probability of bucket overflow can be reduced, it cannot be eliminated; it is handled by using overflow buckets.

Handling of Bucket Overflows (Cont.) Overflow chaining – the overflow buckets of a given bucket are chained together in a linked list. Above scheme is called closed hashing. An alternative, called open hashing, which does not use overflow buckets, is not suitable for database applications.

Hash Indices Hashing can be used not only for file organization, but also for index-structure creation. A hash index organizes the search keys, with their associated record pointers, into a hash file structure. Strictly speaking, hash indices are always secondary indices if the file itself is organized using hashing, a separate primary hash index on it using the same search-key is unnecessary. However, we use the term hash index to refer to both secondary index structures and hash organized files.

Example of Hash Index hash index on instructor, on attribute ID

Deficiencies of Static Hashing In static hashing, function h maps search-key values to a fixed set of B of bucket addresses. Databases grow or shrink with time. If initial number of buckets is too small, and file grows, performance will degrade due to too much overflows. If space is allocated for anticipated growth, a significant amount of space will be wasted initially (and buckets will be underfull). If database shrinks, again space will be wasted. One solution: periodic re-organization of the file with a new hash function Expensive, disrupts normal operations Better solution: allow the number of buckets to be modified dynamically.

Extendible Hashing Situation: Bucket (primary page) becomes full. Why not re-organize file by doubling # of buckets? Reading and writing all pages is expensive! Idea: Use directory of pointers to buckets, double # of buckets by doubling the directory, splitting just the bucket that overflowed! Directory much smaller than file, so doubling it is much cheaper. Only one page of data entries is split. No overflow page! Trick lies in how hash function is adjusted! 5

Example Directory is array of size 4. LOCAL DEPTH 2 Bucket A 4* 12* 32* 16* GLOBAL DEPTH 2 2 Bucket B 00 1* 5* 21* 13* Directory is array of size 4. To find bucket for r, take last `global depth’ # bits of h(r); we denote r by h(r). If h(r) = 5 = binary 101, it is in bucket pointed to by 01. 01 10 2 Bucket C 11 10* 2 DIRECTORY Bucket D 15* 7* 19* DATA PAGES Insert: If bucket is full, split it (allocate new page, re-distribute). If necessary, double the directory. (As we will see, splitting a bucket does not always require doubling; we can tell by comparing global depth with local depth for the split bucket.) 6

Insert h(r)=20 (Causes Doubling) 20 = 101002 2 LOCAL DEPTH 3 LOCAL DEPTH Bucket A 32* 16* GLOBAL DEPTH 32* 16* Bucket A GLOBAL DEPTH 2 2 3 2 Bucket B 00 1* 5* 21* 13* 000 1* 5* 21* 13* Bucket B 01 001 10 2 2 010 Bucket C 11 10* 011 10* Bucket C 100 2 DIRECTORY 2 101 Bucket D 15* 7* 19* 15* 7* 19* 110 Bucket D 111 2 3 Bucket A2 4* 12* 20* DIRECTORY (`split image' 4* 12* 20* Bucket A2 of Bucket A) (`split image' of Bucket A) 7

Points to Note 20 = binary 10100. Last 2 bits (00) tell us r belongs in A or A2. Last 3 bits needed to tell which. Global depth of directory: Max # of bits needed to tell which bucket an entry belongs to. Local depth of a bucket: # of bits used to determine if an entry belongs to this bucket. When does bucket split cause directory doubling? Before insert, local depth of bucket = global depth. Insert causes local depth to become > global depth; directory is doubled by copying it over and `fixing’ pointer to split image page. (Use of least significant bits enables efficient doubling via copying of directory!) 8

Directory Doubling Why use least significant bits in directory? Allows for doubling via copying! 6 = 110 3 6 = 110 3 000 000 001 100 2 2 010 010 1 00 1 00 011 110 6* 01 100 10 001 6* 10 6* 01 1 101 1 6* 101 11 110 6* 11 6* 011 111 111 Least Significant vs. Most Significant

Extendible Hashing: Deletes If removal of data entry makes bucket empty, can be merged with `split image’. If each directory element points to same bucket as its split image, can halve directory. Merging is rarely performed in practiced as data is expected to grow. 9

Comments on Extendible Hashing If directory fits in memory, equality search answered with one disk access; else two. 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data entries) and 25,000 directory elements; directory fits in memory in most nowadays PCs. Directory grows in spurts, and, if the distribution of hash values is skewed, directory can grow large. Multiple entries with same hash value cause problems! 9

Extendable Hashing vs. Other Schemes Benefits of extendable hashing: Hash performance does not degrade with growth of file Minimal space overhead Disadvantages of extendable hashing Extra level of indirection to find desired record Bucket address table may itself become very big (larger than memory) Cannot allocate very large contiguous areas on disk either Solution: B+-tree structure to locate desired record in bucket address table Changing size of bucket address table is an expensive operation Linear hashing is an alternative mechanism Allows incremental growth of its directory (equivalent to bucket address table) At the cost of more bucket overflows

Linear Hashing This is another dynamic hashing scheme, an alternative to Extendible Hashing. LH handles the problem of long overflow chains without using a directory, and handles duplicates. Idea: Use a family of hash functions h0, h1, h2, ... hi(key) = h(key) mod(2iN); N = initial # buckets h is some hash function (range is not 0 to N-1) If N = 2d0, for some d0, hi consists of applying h and looking at the last di bits, where di = d0 + i. hi+1 doubles the range of hi (similar to directory doubling) 10

Linear Hashing (Contd.) Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin. Splitting proceeds in `rounds’. Round ends when all NR initial (for round R) buckets are split. Buckets 0 to Next-1 have been split; Next to NR yet to be split. Current round number is Level. Search: To find bucket for data entry r, find hLevel(r): If hLevel(r) in range `Next to NR’ , r belongs here. Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR; must apply hLevel+1(r) to find out. 11

Overview of LH File h Level In the middle of a round. Buckets split in this round: Bucket to be split If h ( search key value ) Level Next is in this range, must use h Level+1 ( search key value ) Buckets that existed at the to decide if entry is in beginning of this round: `split image' bucket. this is the range of h Level `split image' buckets: created (through splitting of other buckets) in this round 11

Linear Hashing (Contd.) Insert: Find bucket by applying hLevel / hLevel+1: If bucket to insert into is full: Add overflow page and insert data entry. (Maybe) Split Next bucket and increment Next. Can choose any criterion to `trigger’ split. Since buckets are split round-robin, long overflow chains don’t develop! Doubling of directory in Extendible Hashing is similar; switching of hash functions is implicit in how the # of bits examined is increased. 12

Example of Linear Hashing On split, hLevel+1 is used to re-distribute entries. Level=0, N=4 Level=0 h h PRIMARY h h PRIMARY OVERFLOW 1 Next=0 PAGES 1 PAGES PAGES 32* 44* 36* 32* 000 00 000 00 Next=1 Data entry r 9* 25* 5* with h(r)=5 9* 25* 5* 001 01 001 01 14* 18* 10* 30* 14* 18* 10* 30* 010 10 Primary 010 10 bucket page 31* 35* 7* 11* 31* 35* 7* 11* 43* 011 11 011 11 (This info is for illustration only!) (The actual contents of the linear hashed file) 100 00 44* 36* 13

Example: End of a Round After adding: 22, 66, 34. Level=1 PRIMARY OVERFLOW After adding: 22, 66, 34. h 1 h PAGES PAGES Next=0 Level=0 000 00 32* PRIMARY OVERFLOW h h PAGES 1 PAGES 001 01 9* 25* 000 00 32* 010 10 66* 18* 10* 34* 50* 001 01 9* 25* 011 11 43* 35* 11* 010 10 66* 18* 10* 34* Next=3 100 00 44* 36* 011 11 31* 35* 7* 11* 43* 101 11 5* 37* 29* 100 00 44* 36* 101 5* 37* 29* 110 10 14* 30* 22* 01 14* 30* 22* 111 11 31* 7* 110 10 14

LH Described as a Variant of EH The two schemes are actually quite similar: Begin with an EH index where directory has N elements. Use overflow pages, split buckets round-robin. First split is at bucket 0. (Imagine directory being doubled at this point.) But elements <1,N+1>, <2,N+2>, ... are the same. So, need only create directory element N, which differs from 0, now. When bucket 1 splits, create directory element N+1, etc. So, directory can double gradually. Also, primary bucket pages are created in order. If they are allocated in sequence too (so that finding i’th is easy), we actually don’t need a directory! Voila, LH. 15

Comparison of Ordered Indexing and Hashing Cost of periodic re-organization Relative frequency of insertions and deletions Is it desirable to optimize average access time at the expense of worst-case access time? Expected type of queries: Hashing is generally better at retrieving records having a specified value of the key. If range queries are common, ordered indices (B+-tree) are to be preferred In practice: PostgreSQL supports hash indices, but discourages use due to poor performance Oracle supports static hash organization, but not hash indices SQLServer supports only B+-trees

Bitmap Indices Bitmap indices are a special type of index designed for efficient querying on multiple keys Records in a relation are assumed to be numbered sequentially from, say, 0 Given a number n it must be easy to retrieve record n Particularly easy if records are of fixed size Applicable on attributes that take on a relatively small number of distinct values E.g. gender, country, state, … E.g. income-level (income broken up into a small number of levels such as 0-9999, 10000-19999, 20000-50000, 50000- infinity) A bitmap is simply an array of bits

Bitmap Indices (Cont.) In its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute Bitmap has as many bits as records In a bitmap for value v, the bit for a record is 1 if the record has the value v for the attribute, and is 0 otherwise

Bitmap Indices (Cont.) Bitmap indices are useful for queries on multiple attributes not particularly useful for single attribute queries Queries are answered using bitmap operations Intersection (and) Union (or) Complementation (not) Each operation takes two bitmaps of the same size and applies the operation on corresponding bits to get the result bitmap E.g. 100110 AND 110011 = 100010 100110 OR 110011 = 110111 NOT 100110 = 011001 Query: “Males with income level L1”: 10010 AND 10100 = 10000 Can then retrieve required tuples. Counting number of matching tuples is even faster

Bitmap Indices (Cont.) Bitmap indices are generally very small compared with relation size E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space used by relation. If number of distinct attribute values is 8, bitmap is only 1% of relation size Deletion needs to be handled properly Existence bitmap to note if there is a valid record at a record location Needed for complementation not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap Should keep bitmaps for all values, even null value To correctly handle SQL null semantics for NOT(A=v): intersect above result with (NOT bitmap-A-Null)

Efficient Implementation of Bitmap Operations Bitmaps are packed into words; a single word and (a basic CPU instruction) computes and of 32 or 64 bits at once E.g. 1-million-bit maps can be and-ed with just 31,250 instruction Counting number of 1s can be done fast by a trick: Use each byte to index into a precomputed array of 256 elements each storing the count of 1s in the binary representation Can use pairs of bytes to speed up further at a higher memory cost Add up the retrieved counts Bitmaps can be used instead of Tuple-ID lists at leaf levels of B+-trees, for values that have a large number of matching records Worthwhile if > 1/64 of the records have that value, assuming a tuple-id is 64 bits Above technique merges benefits of bitmap and B+-tree indices

Index Definition in SQL Create an index create index <index-name> on <relation-name> (<attribute-list>) E.g.: create index b-index on branch(branch_name) Use create unique index to indirectly specify and enforce the condition that the search key is a candidate key is a candidate key. Not really required if SQL unique integrity constraint is supported To drop an index drop index <index-name> Most database systems allow specification of type of index, and clustering.

End of Chapter