Stat 35b: Introduction to Probability with Applications to Poker

Slides:



Advertisements
Similar presentations
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Advertisements

1 Counting Rules. 2 The probability of a specific event or outcome is a fraction. In the numerator we have the number of ways the specific event can occur.
1 Counting Rules. 2 The probability of a specific event or outcome is a fraction. In the numerator we have the number of ways the specific event can occur.
1 Probability Parts of life are uncertain. Using notions of probability provide a way to deal with the uncertainty.
Intro to Probability & Games
Chapter 4 Basic Probability
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Straight draws. 2.HW2 clarification. 3.Greenstein vs. Farha AA.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Suppose someone bets (or raises) you, going all-in. What should your chances of winning be in order for you to correctly call? Let B = the amount bet to.
1 Weather forecast Psychology Games Sports Chapter 3 Elementary Statistics Larson Farber Probability Business Medicine.
Conditional Probability The probability that event B will occur given that A will occur (or has occurred) is denoted P(B|A) (read the probability of B.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Algebra II 10.4: Find Probabilities of Disjoint and Overlapping Events HW: HW: p.710 (8 – 38 even) Chapter 10 Test: Thursday.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW3 2.Project B teams 3.Gold vs. Helmuth 4.Farha vs. Gold 5.Flush.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Probability of Independent and Dependent Events CCM2 Unit 6: Probability.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Stat 13, Thu 4/19/ Hand in HW2! 1. Resistance. 2. n-1 in sample sd formula, and parameters and statistics. 3. Probability basic terminology. 4. Probability.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
At Least One P(x). P(A) = 1 – P(A) P(At Least One Event) = 1 – P(NONE event) or = 1 – P( ALL opposite ) i.e. Suppose a family has 3 children, find the.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Axioms.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Texas Holdem A Poker Variant vs. Flop TurnRiver. How to Play Everyone is dealt 2 cards face down (Hole Cards) 5 Community Cards Best 5-Card Hand Wins.
Arrangements and Selections (and how they may be counted)
Adding Probabilities 12-5
Stat 35b: Introduction to Probability with Applications to Poker
Counting Principles Ex. Eight pieces of paper are numbered 1 to 8 and placed in a box. One piece of paper is drawn from the box, its number is written.
MAT 142 Lecture Video Series
Stat 35b: Introduction to Probability with Applications to Poker
Unit 8 Probability.
9.3 Two-Way Tables Venn Diagrams and Probability for Two Events
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Probability ·  fraction that tells how likely something is to happen ·   the relative frequency that an event will occur.
The Addition Rule.
12.4 Probability of Compound Events
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Elementary Statistics
Stat 35b: Introduction to Probability with Applications to Poker
I can find probabilities of compound events.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Chapter 14 – From Randomness to Probability
Section 6.2 Probability Models
Probability. ·. fraction that tells. how likely something. `
Stat 35: Introduction to Probability with Applications to Poker
Probability General Addition Rule Multiplication Rule
Stat 35b: Introduction to Probability with Applications to Poker
Probability Problems Solved with
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: hw, terms, etc. Doyle vs. Sheikhan (flush draw) example 3. permutations, and combinations “Addition rule”. Examples involving combinations & addition rule. Kolberg/Murphy example R   u    u 

e.g. you get 1 card, opp. gets 1 card. # of distinct possibilities? 2. Doyle vs. Sheikhan, HSP season 2, episode 9, 9:30. 3. Permutations and Combinations Basic counting principle: If there are a1 distinct possible outcomes on experiment #1, and for each of them, there are a2 distinct possible outcomes on experiment #2, etc., then there are a1 x a2 x … x aj distinct possible ordered outcomes on the j experiments. e.g. you get 1 card, opp. gets 1 card. # of distinct possibilities? 52 x 51. [ordered: (A , K) ≠ (K , A) .] Each such outcome, where order matters, is called a permutation. Number of permutations of the deck? 52 x 51 x … x 1 = 52! ~ 8.1 x 1067

A combination is a collection of outcomes, where order doesn’t matter. e.g. in hold’em, how many distinct 2-card hands are possible? 52 x 51 if order matters, but then you’d be double-counting each [ since now (A , K) = (K , A) .] So, the number of distinct hands where order doesn’t matter is 52 x 51 / 2. In general, with n distinct objects, the # of ways to choose k different ones, where order doesn’t matter, is “n choose k” = choose(n,k) = n! . k! (n-k)!

k! = 1 x 2 x … x k. [convention: 0! = 1.] choose (n,k) = (n) = n! . k k! (n-k)! Ex. You have 2 s, and there are exactly 2 s on the flop. Given this info, what is P(at least one more  on turn or river)? Answer: 52-5 = 47 cards left (9 s, 38 others). So n = choose(47,2) = 1081 combinations for next 2 cards. Each equally likely (and obviously mutually exclusive). Two- combos: choose(9,2) = 36. One- combos: 9 x 38 = 342. Total = 378. So answer is 378/1081 = 35.0%. ------------------------------------------------------ Answer #2: Use the addition rule…

As a result, even if A and B might not be mutually exclusive, ADDITION RULE, revisited….. Axioms (initial assumptions/rules) of probability: P(A) ≥ 0. P(A) + P(Ac) = 1. Addition rule: If A1, A2, A3, … are mutually exclusive, then P(A1 or A2 or A3 or … ) = P(A1) + P(A2) + P(A3) + … A B C As a result, even if A and B might not be mutually exclusive, P(A or B) = P(A) + P(B) - P(A and B).

Ex. You have 2 s, and there are exactly 2 s on the flop Ex. You have 2 s, and there are exactly 2 s on the flop. Given this info, what is P(at least one more  on turn or river)? Answer #1: 52-5 = 47 cards left (9 s, 38 others). So n = choose(47,2) = 1081 combinations for next 2 cards. Each equally likely (and obviously mutually exclusive). Two- combos: choose(9,2) = 36. One- combos: 9 x 38 = 342. Total = 378. So answer is 378/1081 = 35.0%. ------------------------------------------------------ Answer #2: Use the addition rule. P(≥ 1 more ) = P( on turn OR river) = P( on turn) + P( on river) - P(both) = 9/47 + 9/47 - choose(9,2)/choose(47,2) = 19.15% + 19.15% - 3.3% = 35.0%.

Ex. You have AK. Given this, what is P(at least one A or K comes on board of 5 cards)? Wrong Answer: P(A or K on 1st card) + P(A or K on 2nd card) + … = 6/50 x 5 = 60.0%. No: these events are NOT Mutually Exclusive!!! Right Answer: choose(50,5) = 2,118,760 boards possible. How many have exactly one A or K? 6 x choose(44,4) = 814,506 # with exactly 2 aces or kings? choose(6,2) x choose(44,3) = 198,660 # with exactly 3 aces or kings? choose(6,3) x choose(44,2) = 18,920 … … altogether, 1,032,752 boards have at least one A or K, So it’s 1,032,752 / 2,118,760 = 48.7%. Easier way: P(no A and no K) = choose(44,5)/choose(50,5) = 1086008 / 2118760 = 51.3%, so answer = 100% - 51.3% = 48.7%

Example: Poker Royale: Comedians vs. Poker Pros, Fri 9/23/05. Linda Johnson $543,000 Kathy Kolberg $300,000 Phil Laak $475,000 Sue Murphy $155,000 Tammy Pescatelli $377,000 Mark Curry $0. No small blind. Johnson in big blind for $8000. Murphy (8 8). Calls $8,000. Kolberg. (9 9u). Raises to $38,000. Pescatelli (Kh 3) folds, Laak (9 3) folds, Johnson (J 6u) folds. Murphy calls. TV Screen: Kolberg. (9 9u) 81% Murphy (8 8) 19% Flop: 8 Tu T. Murphy quickly goes all in. Kolberg thinks for 2 min, then calls. Laak (to Murphy): “You’re 92% to take it down.” TV Screen: Kolberg. (9 9u) 17% Murphy (8 8) 83% Who’s right? (Turn 9 river Au), so Murphy is eliminated. Laak went on to win.

TV Screen: Kolberg. (9 9u) 81% Murphy (8 8) 19% Flop: 8 Tu T. Murphy quickly goes all in. Kolberg thinks for 2 min, then calls. Laak (to Murphy): “You’re 92% to take it down.” TV Screen: Kolberg. (9 9u) 17% Murphy (8 8) 83% Cardplayer.com: 16.8% 83.2% Laak (about Kolberg): “She has two outs twice.” P(9 on the turn or river, given just their 2 hands and the flop)? = P(9 on turn) + P(9 on river) - P(9 on both) = 2/45 + 2/45 - 1/choose(45,2) = 8.8%Given other players’ 6 cards? Laak had a 9, so it’s 1/39 + 1/39 = 5.1%

TV Screen: Kolberg. (9 9u) 81% Murphy (8 8) 19% Flop: 8 Tu T. Murphy quickly goes all in. Kolberg thinks for 2 min, then calls. Laak (to Murphy): “You’re 92% to take it down.” TV Screen: Kolberg. (9 9u) 17% Murphy (8 8) 83% Cardplayer.com: 16.8% 83.2% other players’ 6 cards? Laak had a 9, so it’s 1/39 + 1/39 = 5.1% Given just their 2 hands and the flop, what is P(9 or T on the turn or river, but not 98 or T8)? P(9 or T on the turn) + P(9 or T on river) - [P(9T) + P(98) + P(T8)] = 4/45 + 4/45 - [choose(4,2) + 2 + 2]/choose(45,2) = 16.77%