Radioactive Decay Radioactive elements are unstable. They decay, change, into different elements over time. Here are some facts to remember: The half-life.

Slides:



Advertisements
Similar presentations
Radioactive Isotopes and Half Life
Advertisements

Radioactive Decay Radioactive elements are unstable. They decay, change, into different elements over time. Here are some facts to remember: The half-life.
Radioactive Decay Now, let’s see how we can use the half-life rate to
Radioactivity Lab Prompt
Absolute Dating Notes and Practice. Directions: Use the following presentation to complete the notes sheet.
Radioactive Isotopes and Half Life 1. What is a Radioactive Isotope? What is Radioactive Decay? What is Half Life? 2.
1 Clip. 2 Radioactivity An unstable atomic nucleus emits a form of radiation (alpha, beta, or gamma) to become stable. In other words, the nucleus decays.
Determining Absolute Time.  Absolute Time: numerical time using a specific units like years  Isotopes: Form of an element with more or fewer neutrons.
ABSOLUTE AGE: Measurements of natural radioactivity in rocks have allowed scientists to understand the numerical age of an object in years.
Key vocab: What is a Radioactive Isotope? What is Radioactive Decay? What is Half Life?
Nuclear Chemistry. Chemical ReactionsNuclear Reactions - Occur when bonds are broken or formed -Occur when the nucleus emits particles or rays -Atoms.
Wednesday, November 4 th, 2015 The blue grid below represents a quantity of C 14. Each time you click, one half-life goes by and turns red. C 14 – blue.
How Do We Know the Age of the Earth? February 26 th, 2015.
Nature’s Clock.  When sedimentary rock is deposited in layers it is deposited horizontally.  Scientists use this “Principle of Original Horizontality”
ABSOLUTE AGE DATING Absolute Age Dating is finding the numerical age of an object Artifacts (rocks or fossils) contain radioactive elements which are.
Radioactive Isotopes and Half Life 1. I can explain what a Radioactive Half-Life is and do a calculation with both a T-table and by equation. 2.
Absolute Dating. DO NOW WEDNESDAY Answer the questions about the rock layers in the picture. Answer the questions about the rock layers in the picture.
Unit 2 Lesson 3 Absolute Dating
The shorter the half-life, the faster the decay rate.
It’s better to have a half-life than no life!
Nuclear Radiation.
Radio-dating.
Review of Radiation Click here for review
Radioactive Decay Radioactive elements are unstable. They decay, change, into different elements over time. Here are some facts to remember: The half-life.
EARTH’S HISTORY RADIOMETRIC DATING
Radioactive Isotopes and Half Life
Reactions involving the nucleus of the atom.
EARTH’S HISTORY RADIOMETRIC DATING
DO NOW Pick up notes sheets. C. Johannesson.
Absolute Dating Radioactive Dating.
Measuring the speed of radioactive decay
It can be difficult to determine the ages of objects by sight alone.
7.2 Half-life.
Nuclear Energy.
Radioactive Decay L.O: SWBAT model how Carbon-14 is used to determine the age of recent fossils.
Review: Types of decay 1. Alpha.
Half-Life 7.2.
Radioactive Isotopes and Half Life
Radioactivity provides a method to determine the age of a material
7.2 Half Life Half Life: the constant rate at which radioactive isotopes naturally decay. This rate refers to the time it takes for half of the nuclei.
Uranium has an atomic number greater than
Absolute Dating.
Geologic Time and Earth History Part 2 – Absolute Age
Nuclear Decay Series & Isotopic Half-Lifes
7.2 What is Half Life? Half Life is the time required for half of the radioactive sample to decay. (c) McGraw Hill Ryerson 2007.
NUCLEAR DECAY.
Finding a rock’s birthday
Measuring the speed of radioactive decay
Elements Atoms and Nuclear
Unit 2 Lesson 3 Absolute Dating
Todays goals… Complete and Submit:
Radioactive Isotopes and Half Life
Nuclear Decay Series & Isotopic Half-Lifes
illustrate the concept of half-life.
ABSOLUTE DATING.
Radioactive Isotopes and Half Life
Absolute Dating.
Warm Up What is the difference between a scientific theory and a “common language” theory? Who proposed that organisms changed over time by trying.
Warm up: The half life of a particular element is 10 days. Answer the following questions using that information. How many days will have passed after.
Absolute Age of Rocks Notes
Measuring the speed of radioactive decay
Rate of Radioactive Decay
Radioactive Decay Radioactive elements are unstable. They decay, change, into different elements over time. Here are some facts to remember: The half-life.
Radioactive Isotopes and Half Life
Radio-dating.
Evolution – Radiometric Dating Evidence
Evolution – Radiometric Dating Evidence
Absolute Dating.
Half Life and Radioactive Decay
Presentation transcript:

Radioactive Decay Radioactive elements are unstable. They decay, change, into different elements over time. Here are some facts to remember: The half-life of an element is the time it takes for half of the material you started with to decay. Remember, it doesn’t matter how much you start with. After 1 half-life, half of it will have decayed. Each element has it’s own half-life ( page 1 of your reference table) Each element decays into a new element (see page 1) C14 decays into N14 while U238 decays into Pb206 (lead), etc. The half-life of each element is constant. It’s like a clock keeping perfect time. Now let’s see how we can use half-life to determine the age of a rock or other artifact.

The grid below represents a quantity of C14. Each time you click, one half-life goes by. Try it! C14 – blue N14 - red Half lives % C14 %N14 Ratio of C14 to N14 100% 0% no ratio As we begin notice that no time has gone by and that 100% of the material is C14 Age = 0 half lives (5700 x 0 = 0 yrs)

The grid below represents a quantity of C14. Each time you click, one half-life goes by. Try it! C14 – blue N14 - red Half lives % C14 %N14 Ratio of C14 to N14 100% 0% no ratio 1 50% 1:1 After 1 half-life (5700 years), 50% of the C14 has decayed into N14. The ratio of C14 to N14 is 1:1. There are equal amounts of the 2 elements. Age = 1 half lives (5700 x 1 = 5700 yrs)

The grid below represents a quantity of C14. Each time you click, one half-life goes by. Try it! C14 – blue N14 - red Half lives % C14 %N14 Ratio of C14 to N14 100% 0% no ratio 1 50% 1:1 2 25% 75% 1:3 Now 2 half-lives have gone by for a total of 11,400 years. Half of the C14 that was present at the end of half-life #1 has now decayed to N14. Notice the C:N ratio. It will be useful later. Age = 2 half lives (5700 x 2 = 11,400 yrs)

The grid below represents a quantity of C14. Each time you click, one half-life goes by. Try it! C14 – blue N14 - red Half lives % C14 %N14 Ratio of C14 to N14 100% 0% no ratio 1 50% 1:1 2 25% 75% 1:3 3 12.5% 87.5% 1:7 After 3 half-lives (17,100 years) only 12.5% of the original C14 remains. For each half-life period half of the material present decays. And again, notice the ratio, 1:7 Age = 3 half lives (5700 x 3 = 17,100 yrs)

How can we find the age of a sample without knowing how C14 – blue N14 - red How can we find the age of a sample without knowing how much C14 was in it to begin with? 1) Send the sample to a lab which will determine the C14 : N14 ratio. 2) Use the ratio to determine how many half lives have gone by since the sample formed. Remember, 1:1 ratio = 1 half life 1:3 ratio = 2 half lives 1:7 ratio = 3 half lives In the example above, the ratio is 1:3. 3) Look up the half life on page 1 of your reference tables and multiply that that value times the number of half lives determined by the ratio. If the sample has a ratio of 1:3 that means it is 2 half lives old. If the half life of C14 is 5,700 years then the sample is 2 x 5,700 or 11,400 years old.

Try the next one on your own.............or C14 has a short half life and can only be used on organic material. To date an ancient rock we use the uranium – lead method (U238 : Pb206). Here is our sample. Remember we have no idea how much U238 was in the rock originally but all we need is the U:Pb ratio in the rock today. This can be obtained by standard laboratory techniques. As you can see the U:Pb ratio is 1:1. From what we saw earlier a 1:1 ratio means that 1 half life has passed. Rock Sample Now all we have to do is see what the half-life for U238 is. We can find that information on page 1 of the reference tables. 1 half-life = 4.5 x 109 years (4.5 billion), so the rock is 4.5 billion years old. Try the next one on your own.............or to review the previous frames click here.

Element X (Blue) decays into Element Y (red) The half life of element X is 2000 years. How old is our sample? See if this helps: 1 HL = 1:1 ratio 2 HL = 1:3 3 HL = 1:7 4 HL = 1:15 If you said that the sample was 8,000 years old, you understand radioactive dating. If you’re unsure and want an explanation just click.

Element X (blue) Element Y (red) How old is our sample? We know that the sample was originally 100% element X. There are three questions: First: What is the X:Y ratio now? Second: How many half-lives had to go by to reach this ratio? Third: How many years does this number of half-lives represent? 1) There is 1 blue square and 15 red squares. Count them. This is a 1:15 ratio. 2) As seen in the list on the previous slide, 4 half-lives must go by in order to reach a 1:15 ratio. 3) Since the half life of element X is 2,000 years, four half-lives would be 4 x 2,000 or 8,000 years. This is the age of the sample.

The half-life of this element is 1 million years. Regents question may involve graphs like this one. The most common questions are: "What is the half-life of this element?" Just remember that at the end of one half-life, 50% of the element will remain. Find 50% on the vertical axis, Follow the blue line over to the red curve and drop straight down to find the answer: The half-life of this element is 1 million years.

After 2 million years 25% of the original material will remain. Another common question is: "What percent of the material originally present will remain after 2 million years?" Find 2 million years on the bottom, horizontal axis. Then follow the green line up to the red curve. Go to the left and find the answer. After 2 million years 25% of the original material will remain.

Lastly, when you see a radioactive decay question ask yourself: End Notes: Carbon 14 can only be used to date things that were once alive. This includes wood, articles of clothing made from animal skins, wool or cotton cloth, charcoal from an ancient hearth. But because the half-life of carbon 14 is relatively short the technique would be useless if the sample was extremely (millions of years) old. There would be too little C14 remaining to measure accurately. The other isotopes mentioned in the reference tables, K40, U238, and Rb87 are all used to date rocks. These elements have very long half-lives. The half-life of U238 for example is the same as the age of the earth itself. That means that half the uranium originally present when the earth formed has now decayed. The half life of Rb87 is even longer. Lastly, when you see a radioactive decay question ask yourself: > What is the ratio? > How many half-lives went by to reach this ratio? > How many years do those half-lives represent?