Zb states (All Results from Belle)

Slides:



Advertisements
Similar presentations
What is the charmed analog of  (1405)? Kiyoshi Tanida (Seoul National University) Aug. 23, 2011 APFB2011, Seoul.
Advertisements

Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
X(3872) Review T.Aushev LPHE seminar. 8 February 2010T.Aushev, LPHE seminar2 Introduction Era of the new family of particles, named XYZ, started from.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
New Particles at BELLE Beauty 2005 Assisi Spectroscopy and new Particles F. Mandl There is an impressive list of new particles in the charm sector discovered.
1 B Physics at CDF Junji Naganoma University of Tsukuba “New Developments of Flavor Physics“ Workshop Tennomaru, Aichi, Japan.
I. Shipsey Heavy Quark Physics ICHEP06 7/27/06 1 The Y(5S) at CLEO Introduction Bs Reconstruction at the Y(5S) CLEO PRL 96, (2006) B Reconstruction.
Charmonium Decays in CLEO Tomasz Skwarnicki Syracuse University I will concentrate on the recent results. Separate talk covering Y(4260).
July 7, 2008SLAC Annual Program ReviewPage 1 New Charmonium-like States Arafat Gabareen Mokhtar SLAC Group-EC (B A B AR ) DOE Review Meeting July 8 th,
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Recent Results of Light Hadron Spectroscopy at BESIII Yutie LIANG (On behalf of the BESIII Collaboration) Justus-Liebig-Universität, Gieβen, Germany MESON.
1 Bottomonium and bottomonium–like states Alex Bondar On behalf of Belle Collaboration Cracow Epiphany Conference “Present and Future B-physics” (9 - 11,
“Exotic” bottomonium states Alex Bondar BINP, Novosibirsk Belle Collaboration (Hadrons from Quarks and Gluons, January 16, 2014, Hirschegg, Austria)
Exotic Heavy Quarkonium States Alex Bondar BINP, Novosibirsk Belle Collaboration (INR, May 15, 2015, Moscow, Russia)
Quarkonium and quarkonium-like states Alex Bondar BINP, Novosibirsk Belle Collaboration (KEK, December 13, 2013, Tsukuba, Japan)
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
Kraków, June 9th, 2015 Exotic quarkonium-like states Andrzej Kupsc Positronium – quarkonia XYZ studies at BESIII Zc states: Zc 0± (3900), Zc 0± (4020)
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
New hadrons BaBar Maurizio Lo Vetere University of Genova & INFN Representing the Collaboration Particles and Nuclei International Conference.
1 Тяжелый кварконий, эксперимент Р.В. Мизюк (ИТЭФ) Сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий“ 23 ноября 2011г., ИТЭФ.
1 Y(5S) spectroscopy at Belle Alex Bondar BINP, Novosibirsk (On behalf of Belle Collaboration) International Conference on High Energy Physics, ,
New Resonances at Belle Jolanta Brodzicka INP Kraków, for the Belle Collaboration ICFP 2005 October 4 th, 2005 Taiwan Outline  ‘ old’ X(3872) properties.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
Stephen Lars Olsen Seoul National University February 10, 2014 A New Spectroscopy of Hadrons High-1 Gangwando.
Intae Yu Sungkyunkwan University, Suwon, Korea Tevatron B Physics KISTI, August 24 th, 2009 B Physics Analysis and Plan at SKKU.
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
Present status of Charm Measurements
Hadron Physics at Belle
The study of pentaquark states in the unitary chiral approach
Maurizio Lo Vetere University of Genova & INFN
Double Ks0 Photoproduction off the proton at CLAS
Spectroscopy Today BaBar’s Contributions
from Belle, BaBar and CLEO
Problems in Charmonium Production in e+e Annihilation and B Decay
Upsilon Decays Helmut Vogel Carnegie Mellon University
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Recent XYZ results from BESIII
Recent results on light hadron spectroscopy at BES
Quarkonia & XYZ at e+e– colliders
Exotic and Conventional Quarkonium Physics Prospects at Belle II
Study of New Hadron Spectroscopy at BESIII
Andrei Nomerotski (Oxford/Fermilab) ICHEP 2006, 29 July 2006
The Impact of BaBar ISR data on the SM Muon Anomaly Prediction
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
Ye Li Graduate Student UW – Madison
charm baryon spectroscopy and decays at Belle
University of Minnesota on behalf of the CLEO Collaboration
Hidden charm spectroscopy from B-factories
Galina Pakhlova ITEP&Belle
Charmed Baryon Spectroscopy and Decays using the Belle Detector
Study of excited baryons at BESII
e+e−→ open charm via ISR X(4160) in J/ recoil
Double charmonium production in e+e– annihilation
e+e−→ J/ D(*)D(*) & ψ(4160) → DD
Hadron spectroscopy results from Belle
CONVENTIONAL CHARMONIA
Study of charmonium(-like) states at the Belle experiment
Exotic Hadron spectroscopy at Belle and BaBar
Hot Topic from Belle : Recent results on quarkonia
BELLE Results on Heavy Spectroscopy
Recent BESII Hot Topics
Heavy quark exotica and heavy quark symmetry
New States Containing Charm at BABAR
Recent Results of Charmonium Decays and Transitions at BESIII
Search for a low-mass Higgs boson (A0) at BABAR
New Spectroscopy with Charm quarks at B factories.
Recent experimental results and Opportunities in Exotic Hadrons
Presentation transcript:

Zb states (All Results from Belle) Jin Li New Hadron Workshop 2012-11-19

Anomalies in (5S) decay hb(2P) hb(1P) (2S) (1S) b(2S) b(1S) (4S) (10860) (11020) JPC = 0 + - 1+ 1 -- 9.50 9.75 10.00 10.25 10.50 10.75 11.00 Mass, GeV/c2 2M(B) +– 260 430 290 190 330 6 2 partial (keV) Belle PRL100,112001(2008) 100 [(5S) (1,2,3S) +–] >> [(4,3,2S) (1S) +–] _  Rescattering of on-shell B(*)B(*) ? Meng and Chao PRD77, 074003(2008) Chen et al., PRD84, 074006(2011) Belle PRL108,032001(2012) (5S)  hb(1,2P) +– are not suppressed expect suppression QCD/mb spin-flip Heavy Quark Symmetry Violation

Anomalies in (5S) decay hb(2P) hb(1P) (2S) (1S) b(2S) b(1S) (4S) (10860) (11020) JPC = 0 + - 1+ 1 -- 9.50 9.75 10.00 10.25 10.50 10.75 11.00 Mass, GeV/c2 2M(B) 260 430 290 6 2 partial (keV) hb production  via intermediate charged states Zb – + + Zb Belle PRL108,032001(2012) (5S)  hb(1,2P) +– are not suppressed expect suppression QCD/mb spin-flip Heavy Quark Symmetry Violation

The analysis of hb(nP)π+π− Studying the decay (5S)  hb(nP) +-: led to observation of Zb Look at the missing mass of a single pion π−, MM(π−) = M(hb π+). Then fit MM(π +π− ) in bins of MM(π−). Fit Function: Significances with systematic: 1 resonance v.s. 0: 6.6 σ 2 resonances v.s. 0: 16 σ

Resonant structure of (5S)  (bb) +– _ (5S)  hb(1P)+- (5S)  hb(2P)+- Belle PRL108,122001(2012) no non-res. contribution Two peaks in all modes phsp Minimal quark content _  bbud  phsp flavor-exotic states M[ hb(1P) π ] M[ hb(2P) π ] Dalitz plot analysis (5S) (1S)+- (5S) (2S)+- (5S) (3S)+- note different scales

Angular analyses for Zb+ arxiv: 1105.4583 Example : (5S)  Zb+(10610) -  [(2S)+] - i (i,e+), [plane(1,e+), plane(1, 2)] cos1 cos2 , rad non-resonant combinatorial Color coding: JP= 1+ 1- 2+ 2- (0 is forbidden by parity conservation) All angular distributions are consistent with JP=1+ , with other JP disfavored at 3  level.

Zb results Angular analysis  both states are JP = 1+ ’ Average over 5 channels M1 = 10607.2  2.0 MeV 1 = 18.4  2.4 MeV MZb – (MB+MB*) = + 2.6  2.1 MeV M2 = 10652.2  1.5 MeV 2 = 11.5  2.2 MeV MZb’ – 2MB* = + 1.8  1.7 MeV Angular analysis  both states are JP = 1+ Decays  IG = 1+ (C= –) Angular plot Phase btw Zb and Zb amplitudes is 0o for (nS) and 180o for hb(mP) ’

Zb amplitudes Properties of Zb amplitudes and phases are consistent with molecular structure.  = 180o  = 0o hb (2S) M(hb), GeV/c2 hb(1P) yield / 10MeV Dip due to destructive interference with non-resonant amplitude in the whole Dalitz plane.  Information on JP of Zb .

Molecule explanation of Zb Wave func. at large distance – B(*)B*  B*B*  =    B B*  =   + – Bondar et al, PRD84,054010(2011) Proximity to thresholds favors molecule over tetraquark Zb  hb(mP) S-wave Zb’  not suppressed Explains Why hb is unsuppressed relative to  Relative phase ~0 for  and ~1800 for hb Production rates of Zb(10610) and Zb(10650) are similar Widths .

More states can be predicted Sbb Sqq 1 States IG(JP) Zb,Zb’ 1+(1+) Wb0,Wb0’ 1−(0+) Wb1 1−(1+) Wb2 1−(2+)

Molecular bottomiums Wb0 Xb Wb1 Wb2 Zb U(?S) Voloshin, PRD 84, 031502 (2011) U(6S) h U(5S) r w g r r p g w B*B* w Up hbphbr Ur Ur hbp Uh hbw Uw hbh g Uw g BB* Ur Uw BB Zb Wb0 Xb Wb1 Wb2 11 0-(1+) 1+(1+) 0+(0+) 1-(0+) 0+(1+) 1-(1+) 0+(2+) 1-(2+) 0-(1-) IG(JP)

Other explanations 1. Threshold effect due to initial pion emission Chen Liu PRD84,094003(2011)   Zb Zb’ B(*) B(*) (5S) (2S) B(*) _ S-wave M [(2S)π] Danilkin Orlovsky Simonov PRD85,034012(2012) 2. Coupled-channel resonance multiple re-scatterings  pole Zb    B(*) B(*)  B(*)  Zb’ + + ... (5S) B(*) _ B(*) _ B(*) _ (2S) (2S) (2S)

Systematic study of B(*)B(*) bound states   3. Deuteron-like molecule B(*) ,,, exchange (5S)  B(*) _ (2S) Ohkoda et al PRD86, 014004 (2012)

Study of Zb→B*B(*) _ For the ϒ(5S) →B*B(*) + channel: _ Fully reconstruct one B meson in five exclusive decay modes. Look at recoil mass of B (for missing B) rM(B) and of the pion (for two B combination) rM(). _

Clear BB* and B*B* signals _ _ Select two peaks Full reconstruction of one B in 5 modes recoil mass _ BB* M(B) Mmiss(B) _ BB _ B*B* BF[ (5S)  B(*)B(*) ] _ preliminary PRD81,112003(2010) Belle 121.4 fb-1 significance Belle 23.6 fb-1 _ BB BB* + BB* B*B* <0.60 % at 90% C.L. (4.25  0.44  0.69) % (2.12  0.29  0.36) % (0  1.2) % (7.3  2.3) % (1.0  1.4) % _ _ _ _ 9.3 5.7 _

Observation of ZbBB* and Zb’B*B* _ Zb’  BB* is suppressed w.r.t. B*B* despite larger PHSP _ M (BB*) Zb preliminary 8 arXiv:1209.6450 Zb’ ? Challenging for tetraquark Molecule  admixture of BB* in Zb’ is small _ phsp Assuming Zb decays are saturated by these channels: recoil mass of  _ M (B*B*) Zb’ 6.8 phsp Crucial input for the models

Absolute branching fractions (3 body) Br((10860)→ (1S) π+π- )= [4.45 ± 0.16(stat.) ± 0.35(syst.)] x 10-3 Br((10860)→ (2S) π+π- )= [7.97 ± 0.31(stat.) ± 0.96(syst.)] x 10-3 Br((10860)→ (3S) π+π- )= [2.88 ± 0.19(stat.) ± 0.36(syst.)] x 10-3 c.f. PRD 81, 112003(2010) f(BB* )=(7.3 ± 2.2 ±0.8) % f(B*B* )=(1.0±1.4 ±0.4) % Br((10860)→ BB* ) = [28.3 ± 2.9± 4.6] x 10-3 Br((10860)→ B*B*π) = [14.1 ± 1.9 ± 2.4] x 10-3 Fractions of sub-modes:

Study of e+e−  (5S)  (nS)00 preliminary BF[(5S)(1S)00] = (2.250.110.20) 10-3 BF[(5S)(2S)00] = (3.790.240.49) 10-3 (2S) in agreement with isospin relations (1S) (1S)π+π- (nS)π+π− fit curve (nS)π0π0 data points (BG subtracted) M miss (0 0) Is there a neutral Zb partner? (2S)π+π-

Fit (2S)00 structure Clear Zbs signals are seen in (2S)π0π0 arXiv:1207.4345 Dalitz plot analysis with Zbs without Clear Zbs signals are seen in (2S)π0π0 Significance of Zb(10610) is 5.3σ (4.9σ with systematics) Zb(10650) is less significant (~2σ) Fit gives M(Zb0(10610) ) =10609±8±6 MeV cf: M(Zb+)=10607.2±2.0 MeV Belle PRELIMINARY

Search for partners of X(3872) C-odd neutral partner search Charged partner X+ search J/ψ+0 channel J/ψη channel χc1γ channel Preliminary PRD 84, 052004 (2011)

Summary Zb+ explanation as molecular states and in (nS)+ and hb(nP) + decays. Observation of Zb+ decays to BB* and B*B* final states in the (5S) B*B(*) + decay study. Zb(10610) decays dominantly to BB*, and Zb(10650) decays dominantly to B*B*. Supporting the molecule explanation. Observation of the neutral partner Zb0(10610) in (5S)(nS)00 decay. Mass of Zb0(10610)= 10609 ± 8 ± 6 MeV . Direct charmonium partner not found. Other recent progress on bottomonium, such as hb(nP), ηb(nS), χb(3P) not covered.

BACKUP

The bottomonium family (1S) (2S) (3S) (4S) 2M(B) BaBar, CLEO collected large ϒ(3S) data because its rich decay trees.

Results of +− missing mass study hb(1P) hb(2P) (1S) (2S) (3S) 121.4 fb-1 2S1S residuals PRL 108 032001 hb(1,2P) JPC=1+- 1st observations 3S1S

(2) (nS)ππ production shape Belle,Phys.Rev.,D82,091106R(2010) Rb Energy scan  mean of shapes of () and hadronic cross section Rb shapes differ by 2.0 

CLEO-c’s e+e− → +− hc cross section (hc +–)  (J/ +–) Γ(Y(4260) → J/ψπ+π−)>508 keV@ 90% C.L.  Large!! X. H. Mo et al., Phys. Lett. B 640 (2006) 182 An interesting comparison! PRL107, 041803 (2011) arXiv:1102.3424 +−hc production is enhanced at Y(4260) +−hb may be enhanced at Yb Substructure of +− hc in Y(4260) has not been studied. Original Motivation for hb search Substructure of +− hb : Enough statistics in Belle’s ϒ(5S) data.

Observation of hb(1P,2P) b(1S)  (5S)hb(nP) +–  b(1S)  Fit Mmiss(+-) spectra [ hb yield] in bins of Mmiss(+-) arxiv:1205.6351 MHF(1S) (11020) Belle : 57.9  2.3 MeV 3 11.00 (10860) hb(1P) PDG’12 : 69.3  2.8 MeV b(1S) 10.75 +- BaBar (3S) (4S) 2M(B) 10.50 BaBar (2S) b(3S) (3S) hb(2P) b(2P) hb(2P) b(1S) 10.25 CLEO (3S) b(2S) (2S) 10.00 hb(1P) b(1P) pNRQCD LQCD  9.75 Kniehl et al, PRL92,242001(2004) Mmiss (+-) (n) Meinel, PRD82,114502(2010) (1S) 9.50 b(1S) MHF(1S) Belle result decreases tension with theory JPC = 0 + - 1 -- 1 + - (0,1,2)++ First measurement  = 10.8 +4.0 +4.5 MeV –3.7 –2.0 as expected

First evidence for b(2S) e+e-(5S)hb(2P) +–  b(2S)  MHF(2S) = 24.3 +4.0 MeV –4.5 First measurement arxiv:1205.6351 PRL pNRQCD LQCD b(2S) Belle 4.2 w/ syst In agreement with theory Mmiss (+-) (2) (2S) = 4  8 MeV, < 24MeV @ 90% C.L. expect 4MeV Branching fractions Expectations BF[hb(1P)  b(1S) ] = 49.25.7+5.6 % BF[hb(2P)  b(1S) ] = 22.33.8+3.1 % BF[hb(2P)  b(2S) ] = 47.510.5+6.8 % 41% 13% 19% –3.3 –3.3 Godfrey Rosner PRD66,014012(2002) –7.7 c.f. BESIII BF[hc(1P)  c(1S) ] = 54.38.5 % 39%

Observation of Y(5S)gY(1D)p+p- Y(1S)[m+m-]p+p-gg final state Three peaks in MM(p+p-): Y(2S) p+p- Y(1D) p+p- Y(2S)[Yp+p-]h[gg] reflection After cb(1P)gYg selection preliminary statistical significance 9s B[Y(5S)gY(2S)p+p-] = (7.51.10.8) 10-3 (cross check) B[Y(5S)gY(1D)p+p-] B[Y(1D)gcb(1P)ggY(1S)gg] = (2.00.40.3) ×10-4 P.S. : An evidence of Y(1D) was seen in inclusive MM(p+p-) spectra 29

Angular Analysis JP = 1+, 1−, 2+, 2− Zb velocity is very small ( β<0.02)  measure all pion momenta in the c.m. frame. (5S)→Zb((nS),hb+ π1)π2 1= (π1,e+) 2= (π2,e+) = (plane(π1,e+)),plane(π1, π2)) JP = 1+, 1−, 2+, 2− Example: (5S)→ Zb(10610) π2 → (2S)π1 π2 Non-resonant

Angular Analysis (hb final state) JP = 1+, 1−, 2+, 2− Example: (5S)→ Zb(10610) π2 → hb(1P)π1 π2 Probabilities at which other JP hypotheses are disfavored with respect to 1+