Newton’s Divided Difference Polynomial Method of Interpolation

Slides:



Advertisements
Similar presentations
Newton’s Divided Difference Polynomial Method of Interpolation
Advertisements

1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
Direct Method of Interpolation
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
11/30/ Secant Method Industrial Engineering Majors Authors: Autar Kaw, Jai Paul
12/1/ Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
6/13/ Secant Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton-Raphson Method
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Differentiation-Discrete Functions
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Chemical Engineering Majors Authors: Autar Kaw
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Lagrangian Interpolation
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Luke Snyder
Newton’s Divided Difference Polynomial Method of Interpolation
Binary Representation
Lagrangian Interpolation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

Newton’s Divided Difference Polynomial Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

Newton’s Divided Difference Method of Interpolation http://numericalmethods.eng.usf.edu

What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. http://numericalmethods.eng.usf.edu

Interpolants Evaluate Differentiate, and Integrate. Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate. http://numericalmethods.eng.usf.edu

Newton’s Divided Difference Method Linear interpolation: Given pass a linear interpolant through the data where http://numericalmethods.eng.usf.edu

Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the Newton’s Divided Difference method for linear interpolation. Figure 2 Location of holes on the rectangular plate. http://numericalmethods.eng.usf.edu

Linear Interpolation http://numericalmethods.eng.usf.edu

Linear Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation http://numericalmethods.eng.usf.edu

Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the Newton’s Divided Difference method for quadratic interpolation. Figure 2 Location of holes on the rectangular plate. http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

General Form where Rewriting http://numericalmethods.eng.usf.edu

General Form http://numericalmethods.eng.usf.edu

General form http://numericalmethods.eng.usf.edu

Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the Newton’s Divided Difference method for a fifth order polynomial. Figure 2 Location of holes on the rectangular plate. http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

THE END http://numericalmethods.eng.usf.edu