Figure 2 Enteroids can model transport physiology

Slides:



Advertisements
Similar presentations
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Advertisements

Figure 4 The gut microbiota directly influences T-cell differentiation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Differential immune responses in the gut (oral tolerance)
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Patients cured of HCV infection
Figure 1 Gut microorganisms at the intersection of several diseases
Figure 5 Lipid droplet consumption
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Figure 3 The T-cell cytokine tree in IBD
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 3 Algorithm from working group describing
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Schematic outlining the results of Buffington et al.
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Example wireless motility recording
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Examples of reflux episodes on pH and pH-impedance monitoring
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 1 Median coverage and distribution by
Figure 4 Functional luminal imaging probe
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Brain–gut axis Brain–gut axis. Schematic of the brain–gut axis, including inputs from the gut microbiota, the ENS, the immune system and the external.
Figure 3 Examples of gene expression heterogeneity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Covering the Cover Gastroenterology
Figure 5 Systems biological model of IBS
Figure 2 The hypoxia-induced proinflammatory
Volume 128, Issue 4, Pages (April 2005)
Figure 5 PPIs and adverse events with proven and unproven causality
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Distribution of markers of active HBV infection
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 8 Assessment of colonic tone using a barostat device
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 The spread of colorectal cancer metastases
Complete intestinal metaplasia (IM) is characterised by goblet cells stained red or blue by alcian blue (pH 2.5)-periodic acid Schiff stain and by the.
Presentation transcript:

Figure 2 Enteroids can model transport physiology Figure 2 | Enteroids can model transport physiology. a | Enteroids generated from healthy individuals swell over time in the presence of forskolin (Fsk), but enteroids generated from patients with cystic fibrosis do not respond to forskolin-induced cAMP. b | Nondifferentiated, or crypt-like, enteroids share many of the same transporters as differentiated, or surface-like enteroids, with the exception of NKCC1. c | To measure sodium absorption via the Na+/H+ exchanger 3 (NHE3), enteroids are loaded with a pH-sensitive fluorophore to monitor pH changes when exposed to various buffers. In the example shown, incubation in NH4+ buffer will lead to a basic pH and will be represented by the pH-dependent emission of a red fluorophore. Replacement of the buffer with a Na+-free buffer causes a sharp decrease to acidic pH and will be represented by emission of a green fluorophore. The pH is increased to basic levels by incubation in Na+ buffer. The change in pH over time indicates NHE3 activity of the enteroids. In, J. G. et al. (2016) Human mini-guts: new insights into intestinal physiology and host–pathogen interactions Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2016.142