Predicting the Shear Failure of Dual-Phase Steels

Slides:



Advertisements
Similar presentations
Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification Stéphane Roux, François Hild LMT, ENS-Cachan Atelier « Problèmes.
Advertisements

STRUCTURAL WRINKLING PREDICTIONS FOR MEMBRANE SPACE STRUCTURES
Optimization of Laser Deposited Rapid Tooling D. Schwam and Y. Wang Case Western Reserve University NADCA DMC, Chicago – Feb.17,
Micro-Scale Experiments and Models for Composite Materials PhD project duration: 1. January December 2014 Project type & funding: PhD-A project,
NEW DESIGN FOR RF FINGERS C. Garion 5 June, 2012TE-VSC1 Acknowledgements to A. Lacroix and H. Rambeau for materials and help.
Simulation of Pillar Failure Using FRACOD 2D. Objective n To test the capability of FRACOD 2D in predicting failure of a pillar between two rock excavations.
ES 246 Project: Effective Properties of Planar Composites under Plastic Deformation.
Prediction of Load-Displacement Curve for Weld-Bonded Stainless Steel Using Finite Element Method Essam Al-Bahkali Jonny Herwan Department of Mechanical.
Metal Forming Metal forming includes a large group of manufacturing processes in which plastic deformation is used to change the shape of metal work pieces.
H.-M. Huang S.-D. Liu National Steel Corporation, Market St., Livonia, MI S. Jiang DaimlerChrysler Corporation, 800 Chrysler Dr., Auburn Hills,
Failure Theories Why do parts fail? What kind of stresses?
Computational Fracture Mechanics
Constraining and size effects in lead-free solder joints
J.Cugnoni, 1 Constraining and size effects in lead-free solder joints J. Cugnoni 1, J. Botsis 1, V. Sivasubramaniam 2, J. Janczak-Rusch.
1 Deformation and damage of lead free materials and joints J. Cugnoni*, A. Mellal*, Th. J. J. Botsis* * LMAF / EPFL EMPA Switzerland.
Analytical prediction of springback based on residual differential strain during sheet metal bending.
Characterization of 1mm lead-free joints. Test results (DIC 2D)
Modelling and optimal design of sheet metal RP&M processes Meelis Pohlak Rein Küttner Jüri Majak Tallinn University of Technology 2004.
Research in Blanking, Hole Flanging and Edge Cracking By Siddharth Kishore Dr. Taylan Altan
Sheet Metal Bending.
Thermal Strains and Element of the Theory of Plasticity
Aluminum Sheet Stretch-Bend Limits and Fracture Criterion
NEW DEVELOPMENTS IN FABRICATED TEES – A QUALITY ASSURANCE DESIGN GUIDELINE A.C. Seibi and R. J. Lawrence, GPPA.
Critical Plane Approach in Stage I and Stage II of Fatigue Under Multiaxial Loading A. KAROLCZUK E. MACHA Opole University of Technology, Department of.
Mechanical Properties
Plasticity and Failure of Advanced High Strength Steels
Mechanical Properties
Department of Tool and Materials Engineering Investigation of hot deformation characteristics of AISI 4340 steel using processing map.
Module 8 Overview of processes 1. Module 82 Metal forming Principle of the process Structure Process modeling Defects Design For Manufacturing (DFM) Process.
1 ME383 Modern Manufacturing Practices Lecture Note #3 Stress-Strain & Yield Criteria Dr. Y.B. Guo Mechanical Engineering The University of Alabama.
FUNDAMENTALS OF METAL FORMING
Sheet Metal Forming Processes. Introduction Ratio – Surface Area:Volume is very high for sheet metal process. Plates – thickness > 0.25 inches –Boilers,
ME 612 Metal Forming and Theory of Plasticity
Poisson's ratio, n • Poisson's ratio, n: Units:
R. H. Wagoner 1 Thermally-Enhanced Forming of Mg Sheets Midterm Report, Dec. 5, May 31, 2009 Robert H. Wagoner R. Wagoner, LLC 144 Valley Run Place.
Draw-Bend Fracture Prediction with Dual-Phase Steels R. H. Wagoner September 25, 2012 AMPT Wollongong, Australia.
Forming Advanced High Strength Steels
MAE 322 Machine Design Lecture 2
Reducing Uncertainty in Fatigue Life Estimates Design, Analysis, and Simulation 1-77-Nastran A Probabilistic Approach To Modeling Fatigue.
Module 8 Overview of processes 1. Module 82 Metal forming Principle of the process Structure and configurtion Process modeling Defects Design For Manufacturing.
NUMISHEET2005 —Detroit, MI August 15-19, Cyclic and Monotonic Plasticity of Mg Sheet R. H. Wagoner, X. Lou, M. Li, S. R. Agnew*, Dept. Materials.
R. H. Wagoner 1 Thermally-Enhanced Forming of Mg Sheets Midterm Report, Dec. 5, May 31, 2009 Robert H. Wagoner R. Wagoner, LLC 144 Valley Run Place.
LEB 14 X 11 C. Garion Aluminum bellows for LHC experiments C. Garion, TE/VSC.
Chapter 16 Lecture 2 Sheet Metal Forming. Figure 16.14a: Major Strain and Minor Strain During stretching in sheet metal, Volume constant –  l +  w +
Exercises in Hydraulic Bulge Testing H.S. Kim H. Lim Mike Sumption Ted Collings The Ohio State University Dept of Materials Science and Engineering Center.
III. Engineering Plasticity and FEM
TS Cool Down Studies TSu Unit Coils (24-25) N. Dhanaraj and E. Voirin Tuesday, 10 March 2015 Reference: Docdb No:
ISE 311 Tensile Testing Lab in conjunction with Section 3.1 in the text book “Fundamentals of Modern Manufacturing” Third Edition Mikell P. Groover 4/25/2008.
Plane Stress Fracture Prediction for Aluminum and High Strength Steel Sheets Using Digital Image Correlation Yannis Korkolis University of New Hampshire.
2MOrC1-02 Mechanical properties of niobium tube with
Dual Phase Steels Producing a new high strength steels without reducing the formability or increasing costs.
The Thick Walled Cylinder
Modeling of LTS and HTS superconductors at the University of Twente
Threshold stress intensity factor for hydrogen assisted cracking of Cr-Mo steel used as stationary storage buffer of a hydrogen refuelling station Takuya.
Background Mg AZ31B sheet alloy has advantages of low density, high strength and high stiffness. However, it has limited formability at room temperature,
NSM LAB Net Shape Manufacturing Laboratory
Optimal design of composite pressure vessel by using genetic algorithm
The Thick Walled Cylinder
Chapter X: Sheet Forming (Membrane Theory) 1 Content of Membrane Analysis Basic Assumptions Static Equilibrium Equations Strain State Application 1: Hole.
Sheet Metal Forming Processes
Draw-Bend Fracture Prediction with Dual-Phase Steels
Chapter 5 Power Estimation in Extrusion and Wire-rod Drawing
Yihan Xu and Chang-Soo Kim
University of Liège Department of Aerospace and Mechanical Engineering
Stuart McAllister October 10, 2007
Overview of processes Module 8.
Sheet Metal Forming Processes
Qualification of sheets for cold forming
Yielding And Fracture Under Combine Stresses
Presentation transcript:

Predicting the Shear Failure of Dual-Phase Steels Numiform 2010, Pohang, Korea June 16, 2010 R. H. Wagoner, J.H. Kim1, J. Sung2, D. K. Matlock3, D.Y. Kim1 The Ohio State University 1KIMS, S. Korea 2Dongbu Steel, S. Korea 3Colorado School of Mines, USA

Outline Background Results Practical Application Draw-Bend Fracture Test Thermo-Mechanical (T-M) FEM H/V Constitutive Equation Results Practical Application Problems with Direct Use Adiabatic Const. Eq. Plane-strain FE Model Analytical Model Framework for R/t-Affected Failure Conclusions 2

Background 3 3

Jim Fekete et al, AHSS Workshop, 2006 Shear Fracture of AHSS Jim Fekete et al, AHSS Workshop, 2006

Unpredicted by FEA / FLD Stoughton, AHSS Workshop, 2006 5

Draw-Bend Fracture Test Background: Draw-Bend Fracture Test 6 6

Draw-Bend Fracture Test (DBF): V1, V2 Constant 190.5 mm Start 444.5 mm (10”) V2 = aV1 Max. Finish R 190.5 mm Specimen width: 25mm Tool radius choices: 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16 inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1, 14.3, 19 mm a = V2/V1: 0 and 0.3 Start 444.5 mm(10”) uf V1 Max. Finish Wagoner et al., Esaform, 2009 7 7

Phenomenological Failure Types Type I Type II Type III 65o V2 V1 Type I: Tensile failure (unbent region) Type II: Shear failure (not Type I or III) Type III: Shear failure (fracture at the roller) 8 8

Thermo-Mechanical FEM Background: Thermo-Mechanical FEM 9 9

FE Draw-Bend Model: Thermo-Mechanical (T-M) U2, V2 hmetal,air = 20W/m2K Abaqus Standard (V6.7) 3D solid elements (C3D8RT), 5 layers Von Mises, isotropic hardening Symmetric model m = 0.04 hmetal,metal = 5kW/m2K Kim et al., IDDRG, 2009 U1, V1

Selected Materials 11 11

H/V Constitutive Equation 1. Background: H/V Constitutive Equation 12 12

“H/V” Constitutive Framework Special: Standard: Sung et al., Int. J. Plast. 2010

“H/V” Constitutive Eq.: Large-Strain Verification 14

FE Simulated Tensile Test: H/V vs. H, V 15 15

Predicted ef, H/V vs. H, V: 3 alloys, 3 temperatures Standard deviation of ef: simulation vs. experiment Hollomon Voce H/V DP590 0.05 (23%) 0.05 (20%) 0.02 (7%) DP780 0.03 (18%) 0.04 (22%) 0.01 (6%) DP980 0.04 (30%) 0.03 (21%) 0.01 (5%) 16 16

2. Results 17 17

Thermo-Mechanical Simulation DP780-1.4mm, V1=51mm/s, V2/V1=0, R/t=4.5

Isothermal Simulation DP780-1.4mm, V1=51mm/s, V2/V1=0, R/t=4.5

Front Stress vs. Front Displacement 20

Displacement to Maximum Front Load vs. R / t 21

Interim Conclusions Deformation-induced heating dominates the error in predicting shear failures (FLD/FEM). Damage also occurs, but is a smaller effect for most alloys. [Exception: DP 980(D) TD] New constitutive equation is essential. (Large-strain accuracy, incorporate T in strain hardening.) Most shear failures are predictable. (But impractical: solid elements, T-M model.) 22

3. Practical Application Problems with Direct Use 23 23

DBF Test and FE vs. Industrial Practice and FE ~Plane strain High rate / adiabatic Shell elements / Iso-T FE FLD – large R/t, low rate Fracture? Draw-Bend Test, 25mm Strip Width 24

DBF Formability: DP980(A), RD vs. TD * Directional Formability: TD=RD 25 25

DBF Formability: DP980(D), RD vs. TD * Directional Formability: RD>TD 26 26

3. Practical Application Adiabatic Const. Eq. 27 27

Simulated D-B Test: Effect of Draw Speed 28

Adiabatic Constitutive Equation 29

3. Practical Application Plane-Strain FE Model 30 30

FE Plane Strain DBF Model U2, V2 = 0 Abaqus Standard (V6.7) Plane strain solid elements (CPE4R), 5 layers Von Mises, isotropic hardening Isothermal, Adiabatic, Thermo-Mechanical U1, V1

Plane Strain DBF Test DP780-1.4mm, R/t=3.4 32

3. Practical Application Analytical Model (PS, Adiabatic) 33 33

Analytical Plane Strain Bending Model Fracture Criterion: Fracture occurs at Tmax for given R, to Yoshida, 2003 Wagoner, 2007 34

Analytical Model Results for DP780 vs. PS FE 35

DBF Interpretation: Plane-strain vs. Tension 36

Analytical Model vs. DBF: DP980 37

Framework for R/t-affected Failure (Preliminary) 38 38

Inner and Outer Strains at Maximum Load 39

Membrane Strains at Maximum Load 40

Membrane Strains (R/t Affected Only) 41

R/t-Affected Membrane Strains vs. t/R 42

Analytical Model: Model vs. Fit 43

Analytical Model: Model vs. Fit 44

PS T-M Model: Model vs. Fit 45

PS T-M Model: Model vs. Fit 46

Next Steps Simulate adiabatic limit strains – PS, 3-D, solid, shell. Add to framework. Add simple fracture limit (emax?). Apply R/t criterion to a) DBF results, b) practical forming problems (GM). 47

Conclusions Simple models clarify DBF results. Three failure mechanisms: tension, R/t localization, fracture Maximum tension load determines failure by plastic localization (Yoshida 2003, Hudgins 2010) Promising framework introduced for predicting R/t-affected localization failures. 48

References R. H. Wagoner, J. H. Kim, J. H. Sung: Formability of Advanced High Strength Steels, Proc. Esaform 2009, U. Twente, Netherlands, 2009 (CD) J. H. Sung, J. H. Kim, R. H. Wagoner: A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plasticity, (accepted). A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J. Van Tyne, "Predicting Instability at Die Radii in Advanced High Strength Steels," Journal of Materials Processing Technology,  vol. 210, 2010,  pp. 741-750. J. H. Kim, J. Sung, R. H. Wagoner: Thermo-Mechanical Modeling of Draw-Bend Formability Tests, Proc. IDDRG: Mat. Prop. Data for More Effective Num. Anal., eds. B. S. Levy, D. K. Matlock, C. J. Van Tyne, Colo. School Mines, 2009, pp. 503-512. (ISDN 978-0-615-29641-8) R. H. Wagoner and M. Li: Simulation of Springback: Through-Thickness Integration, Int. J. Plasticity, 2007, Vol. 23, Issue 3, pp. 345-360. M. R. Tharrett, T. B. Stoughton: Stretch-bend forming limits of 1008 AK steel, SAE technical paper No.2003-01-1157, 2003. M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto: Fracture Limits of Sheet Metals Under Stretch Bending, Int. J. Mech. Sci., 2005, 47, pp. 1885-1896. 49

Thank you ! 50

Material Parameters DP590 DP780 DP980 H (MPa) 1051 1655 1722 n 0.179   DP590 DP780 DP980 H (MPa) 1051 1655 1722 n 0.179 0.213 0.154 V (MPa) 643.9 752.1 908.1 A 0.576 0.265 0.376 B 22.44 30.31 39.64 b 2.67 E-4 5.78 E-4 3.86 E-4 a1 0.818 0.507 0.586 a2 1.93 E-3 1.87 E-3 1.49 E-3 a 2.0 E-3 3.0 E-3 2.1 E-3 1.03 E-2 1.15 E-2 8.6 E-3 (/s) 0.001 TRT(°C) 25 51

Material Properties Orientation Thickness (mm) UTS (MPa) 0.2% YS eu (%) et n r** YS/UTS DP590(B)-CR-1.4mm RD 1.35 605 352 15.9 23.2 0.21 1.02 0.58 TD 1.37 616 359 15.8 1.25 DD 620 351 16.3 23.6 0.83 0.57 DP780(D)-GI-1.4mm 1.40 815 499 12.7 17.9 0.19 0.87 0.61 810 486 12.9 17.2 0.18 0.69 0.60 803 480 18.1 0.89 DP980(D)-GA-1.45mm 1.43 1022 551 9.9 13.3 0.15 0.82 0.54 1021 584 9.4 0.13 0.80 986 511 1.04 0.52 TRIP780(D)-GA-1.6mm 1.60 857 471 14.9 19.2 0.22 0.81 0.55 1.57 860 501 13.9 18.4 1.20 844 481 21.3 1.03 52

Analytical Model – Curvilinear Derivation Fracture Criterion: Fracture occurs at Tmax for given R, to 53

Uf: A More Sensitive Measure of Formability 54 54

Peak Front Stress vs. Bending Ratio (R/t): DP 780 55

Peak Front Stress vs. Bending Ratio (R/t): DP 980 56

Peak Front Stress vs. Bending Ratio (R/t): DP 590 57

Measured vs. Predicted Failure Types V1 (mm/s) R/t = 2.3 3.4 4.5 5.7 6.8 7.9 10.2 13.6 DP590-1.4-RD 51 III (III) I (I) 13 2.5 I (III) DP780-1.4-RD III (I) DP980-1.45-RD V2/V1=0 Values in the parentheses are predicted ones.

Simplified FE Results 59