Mobile Robot Kinematics سینماتیک روباتهای متحرک دکتر سعید شیری قیداری & فصل 3 کتاب Introduction to Autonomous Mobile Robots Amirkabir University of Technology Computer Engineering & Information Technology Department
سینماتیک روباتهای متحرک مطالعه سینماتیک روباتهای متحرک در دو زمینه لازم است: طراحی مناسب روبات برای انجام عمل مورد نظر نوشتن نرم افزار کنترلی روبات ساخته شده یک اختلاف مهم بین روبات متحرک و روبات صنعتی در اندازه گیری موقعیت است. روبات صنعتی در یک نقطه ثابت است لذا میتوان موقعیت آنرا نسبت به این نقطه ثابت اندازه گرفت.
سینماتیک روباتهای متحرک هدف: توصیف عملکرد مکانیکی روبات به منظور طراحی و کنترل سینماتیک رواتهای متحرک شبیه به روباتهای صنعتی است با این تفاوت که روبات متحرک میتواند آزادانه در محیط حرکت نماید. علاوه بر آن روش مستقیمی برا یاندازه گیری موقعیت روبات نیست و موفعیت را باید در طول زمان با انتگرال گیری از حرکت های انجام شده بدست آورد. اینکار منجر به ایجاد خطا در اندازه گیری خواهد شد. مقابله با این مسئله یکی ازمباحث جدی در روبات های متحرک میباشد. برای فهم حرکت روبات باید از محدودیتهائی که چرخها بر سر راه حرکت ایجاد میکنند شروع نمود.
کنترل موقعیت یک روبات برای کنترل موقعیت یک روبات لازم است تا موارد زیر را بدانیم: مدل سینماتیکی/ دینامیکی روبات مدل تعامل بین چرخ و زمین تعریفی از حرکت مورد نیاز: کنترل سرعت- کنترل موقعیت قانون کنترلی که نیازمندیهای لازم را برآورده میکند.
نشان دادن موقعیت روبات فرض میشود که روبات یک جسم صلب باشد که روی چرخها قرار گرفته و بر روی یک صفحه حرکت میکند. موقعیت روبات را میتوان با دو متغیر x,y در صفحه و یک متغیر q برای نشان دادن جهت آن مشخص نمود
نشان دادن موقعیت روبات برای اینکار از دو فریم مختصات استفاده میشود: یکی فریم مختصات مرجع و دیگری فریم محلی که بر روی روبات قرار دارد فریم مرجع بصورت زیر نشان دادن میشود فریم روبات بصورت زیر نشان داده میشود
نشان دادن موقعیت روبات اگر اختلاف زاویه بین فریم روبات و فریم مرجع برابر با q بوده و مبدا فریم روبات (P) درنقطه x,y نسبت به فریم مرجع قرار داشته باشد در اینصورت فریم روبات نسبت به فریم مرجع بصورت زیر نشان داده میشود.
نشان دادن موقعیت روبات برای توصیف حرکت روبات لازم است تا حرکت در راستای فریم مرجع به حرکت در فریم روبات نگاشت شود. برای اینکار از ماتریس دوران زیر استفاده میشود. برای مثال برای حالت شکل قبل داریم
مدل سینماتیک مستقیم هدف: اگر سرعت چرخهای روبات و ابعاد هندسی آنرا را داشته باشیم حرکت روبات چگونه خواهد بود؟ روبات شکل زیر دارای دو چرخ هر یک با شعاع r بوده و باندازه l از نقطه P که در وسط بین دو چرخ قرار دارد فاصله دارد. سرعت چرخها برابر با q1,q2 میباشد. در اینصورت مدل سینماتیک مستقیم روبات بصورت زیر خواهد بود:
مثال
محاسبه سینماتیک مستقیم برای محاسبه حرکت روبات در فریم مرجع میتوان تاثیر هر یک از چرخها در فریم روبات را محاسبه کرده و نتیجه را به فریم مرجع منتقل نمائیم. اگر فرض کنیم که روبات در جهت محور X در حرکت باشد سرعت حرکت نقطه P بازای چرخش هر یک از چرخها بصورت زیر خواهد بود: در یک روبات با درایو دیفرانسیلی میتوان این دو مولفه را با هم جمع نمود
محاسبه سینماتیک مستقیم مولفه y. این حرکت صفر خواهد بود. برای محاسبه مولفه q در نظر داشته باشید اگر فقط چرخ راست دوران کند روبات حول چرخ چپ به چرخش در خواهد آمد.سرعت زاویه ای نقطه P برابر خواهد بود با: به همین ترتیب برای چرخ چپ داریم با ترکیب این روابط مدل سینماتیکی روبات بصورت زیر خواهد بود
محاسبه سینماتیک مستقیم در این رابطه مقدار ماتریس دوران از رابطه زیر بدست میاید. در حالت کلی برای توصیف حرکت روبات مجبور خواهیم بود تا محدودیت هائی که هر چرخ بر حرکت اعمل میکند را نیز در نظر بگیریم.
Holonomic Robots
Nonholonomic systems Nonholonomic systems are characterized by constraint equations involving the time derivatives of the system conguration variables. These equations are non integrable; they typically arise when the system has less controls than configuration variables. For instance a car-like robot has two controls (linear and angular velocities) while it moves in a 3-dimensional conguration space. As a consequence, any path in the conguration space does not necessarily correspond to a feasible path for the system. This is basically why the purely geometric techniques developed in motion planning for holonomic systems do not apply directly to nonholonomic ones.
مثال چرخ ثابت Nonholonomic Constraint در یک دوچرخه با یک چرخ ثابت و یک چرخ فرمان پذیر این شرط بر قرار خواهد بود
دوچرخه با دو چرخ ثابت =1 با این وجود این یک روبات holonomic است
روبات تمام جهت روبات تمام جهت فاقد محدودیت سینماتیکی است لذا هیچ محدودیت هولونومیکی نخواهد داشت. لذا یک روبات تمام جهت همیشه holonomic است.