Mast cell activation contributes to sickle cell pathobiology and pain in mice by Lucile Vincent, Derek Vang, Julia Nguyen, Mihir Gupta, Kathryn Luk, Marna.

Slides:



Advertisements
Similar presentations
Fig. 2. The expression of pKr-2 in the substantia nigra (SN) of patients with Parkinson's disease (PD). (A, B) Western blot analysis for pKr-1-2 and pKr-2,
Advertisements

Volume 17, Issue 7, Pages (July 2016)
Activation of Src Family Kinases in Spinal Microglia Contributes to Formalin-Induced Persistent Pain State Through p38 Pathway  Yong-Hui Tan, Kai Li,
An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth by Toshihiko Tanno, Peng Zhang,
Inflammatory Murine Skin Responses to UV-B Light Are Partially Dependent on Endothelin-1 and Mast Cells  Martin Metz, Verena Lammel, Bernhard F. Gibbs,
Volume 131, Issue 3, Pages (September 2006)
by Hideto Sano, Kohei Hosokawa, Hiroyasu Kidoya, and Nobuyuki Takakura
Activation of Transient Receptor Potential Vanilloid Type-1 Channel Prevents Adipogenesis and Obesity by Li Li Zhang, Dao Yan Liu, Li Qun Ma, Zhi Dan Luo,
Platelet-derived growth factor C promotes revascularization in ischemic limbs of diabetic mice  Junji Moriya, MD, PhD, Xiumin Wu, PhD, Jose Zavala-Solorio,
Systemic inflammation activates the exosomal machinery in the choroid plexus Systemic inflammation activates the exosomal machinery in the choroid plexus.
by Kathryn Lagrue, Alex Carisey, David J
Thokozeni Lipato, MD Assistant professor General Internal Medicine Sickle Cell Disease Megan Lemay 10/29/16.
Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer  J. Nguyen, K. Luk, D. Vang,
PRT , a novel Syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model by Michael P. Reilly, Uma Sinha,
Experimental Hematology
GLEE-ful for sickle cell pain?
Volume 36, Issue 1, Pages (September 2002)
Neurovascular Aspects of Skin Neurogenic Inflammation
by Rong L. He, Jian Zhou, Crystal Z
TSLP Induces Mast Cell Development and Aggravates Allergic Reactions through the Activation of MDM2 and STAT6  Na-Ra Han, Hyun-A Oh, Sun-Young Nam, Phil-Dong.
Volume 22, Issue 2, Pages (February 2014)
Liemin Au, Jeffrey P. Meisch, Lopa M. Das, Amy M. Binko, Rebecca S
Paradoxical effects of the cannabinoid CB2 receptor agonist GW on rat osteoarthritic knee joint pain  N. Schuelert, C. Zhang, A.J. Mogg, L.M. Broad,
Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice by Ramona S. Scotland, Melanie J.
AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia by Donya Moradi Manesh, Jad El-Hoss, Kathryn.
Neurophysiological, Neuroimmunological, and Neuroendocrine Basis of Pruritus  Martin Steinhoff, John Bienenstock, Martin Schmelz, Marcus Maurer, Ed Wei,
Volume 82, Issue 1, Pages (April 2014)
A Toll-Like Receptor 7, 8, and 9 Antagonist Inhibits Th1 and Th17 Responses and Inflammasome Activation in a Model of IL-23-Induced Psoriasis  Weiwen.
Pituitary Adenylate Cyclase-Activating Polypeptide Is Upregulated in Murine Skin Inflammation and Mediates Transient Receptor Potential Vanilloid-1-Induced.
Role of IL-9 in the pathophysiology of allergic diseases
Hyper-Inflammation and Skin Destruction Mediated by Rosiglitazone Activation of Macrophages in IL-6 Deficiency  Lopa M. Das, Julie Rosenjack, Liemin Au,
Mast Cells Are Key Mediators of Cathelicidin-Initiated Skin Inflammation in Rosacea  Yumiko Muto, Zhenping Wang, Matthieu Vanderberghe, Aimee Two, Richard.
Ovariectomy expands murine short-term hemopoietic stem cell function through T cell expressed CD40L and Wnt10B by Jau-Yi Li, Jonathan Adams, Laura M. Calvi,
Decreased Expression of Caveolin-1 Contributes to the Pathogenesis of Psoriasiform Dermatitis in Mice  Yukie Yamaguchi, Yuko Watanabe, Tomoya Watanabe,
Yasuyo Sano, Jin Mo Park  Journal of Investigative Dermatology 
Volume 128, Issue 7, Pages (June 2005)
Zeinab Khalil  Journal of Investigative Dermatology 
Volume 155, Issue 2, Pages (October 2013)
by Kelly A. McGowan, Wendy W. Pang, Rashmi Bhardwaj, Marcelina G
Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15 by Lazar.
Volume 24, Issue 9, Pages (September 2016)
Functional Beta2-Integrins Restrict Skin Inflammation In Vivo
Histamine Contributes to Tissue Remodeling via Periostin Expression
Volume 25, Issue 11, Pages (November 2017)
Volume 134, Issue 3, Pages (March 2008)
Blockade of nociceptive sensory afferent activity of the rat knee joint by the bradykinin B2 receptor antagonist fasitibant  A. Gomis, S. Meini, A. Miralles,
An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth by Toshihiko Tanno, Peng Zhang,
Volume 131, Issue 3, Pages (September 2006)
Food allergy herbal formula 2 protection against peanut anaphylactic reaction is via inhibition of mast cells and basophils  Ying Song, MD, Chunfeng Qu,
Volume 18, Issue 13, Pages (March 2017)
Cutaneous Denervation of Psoriasiform Mouse Skin Improves Acanthosis and Inflammation in a Sensory Neuropeptide-Dependent Manner  Stephen M. Ostrowski,
Exacerbated and Prolonged Allergic and Non-Allergic Inflammatory Cutaneous Reaction in Mice with Targeted Interleukin-18 Expression in the Skin  Yusuke.
Nicholas L. Mascarenhas, Zhenping Wang, Yu-Ling Chang, Anna Di Nardo 
Molecular Therapy - Methods & Clinical Development
Topical Cholecystokinin Depresses Itch-Associated Scratching Behavior in Mice  Shoko Fukamachi, Tomoko Mori, Jun-Ichi Sakabe, Noriko Shiraishi, Etsushi.
Volume 53, Issue 5, Pages (March 2007)
Attenuated Cold Sensitivity in TRPM8 Null Mice
Volume 19, Issue 9, Pages (May 2017)
Toll-Like Receptor 3 Ligand Polyinosinic:Polycytidylic Acid Promotes Wound Healing in Human and Murine Skin  Qing Lin, Li Wang, Youkun Lin, Xialin Liu,
by Nicholas J. Laping, Michael P. DeMartino, Joshua E
Nociceptive Tuning by Stem Cell Factor/c-Kit Signaling
Therapeutic activity of gal‐encapsulated cytotoxic drugs on tumor xenografts Therapeutic activity of gal‐encapsulated cytotoxic drugs on tumor xenografts.
Douglas C. McVey, Steven R. Vigna  Gastroenterology 
Influence on chronic morphine on pain.
ONC201 activates the ISR. ONC201 activates the ISR. (A) Western blotting analysis for ATF4, CHOP, ATF3, and TRB3 on lysates from HCT116 cells cultured.
Referred visceral hyperalgesia in wild-type (+/+) and Nav1
Volume 46, Issue 5, Pages (June 2012)
by Kalpna Gupta, Chunsheng Chen, Gerard A. Lutty, and Robert P. Hebbel
Fig. 1. The HCN channel blocker ivabradine (IVA) is analgesic in a mouse model of type 1 diabetes. The HCN channel blocker ivabradine (IVA) is analgesic.
Fig. 2. Col IV–Ac2-26 NPs increase subendothelial collagen in Ldlr−/− mice with established atherosclerosis. Col IV–Ac2-26 NPs increase subendothelial.
Presentation transcript:

Mast cell activation contributes to sickle cell pathobiology and pain in mice by Lucile Vincent, Derek Vang, Julia Nguyen, Mihir Gupta, Kathryn Luk, Marna E. Ericson, Donald A. Simone, and Kalpna Gupta Blood Volume 122(11):1853-1862 September 12, 2013 ©2013 by American Society of Hematology

Mast cell activation occurs in sickle cell anemia. Mast cell activation occurs in sickle cell anemia. (A) ir pixels for tryptase, SP, and CGRP in the dorsal skin. *P < .05, **P < .01 vs corresponding HbAA-BERK (ANOVA, with Bonferroni). (B) Representative confocal images of dorsal skin sections showing mast cell–specific costaining for c-kit/CD117 (red), FcεRI (green), and tryptase (blue). (C) Skin mast cells in culture stained for c-kit/CD117 (red), FcεRI (green), and tryptase (blue). (D-F) Gene expression of c-kit/CD117 (D), FcεRI (E), and TLR-4 (F) in mast cells derived from skin, measured by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), normalized to GAPDH mRNA, and shown relative to HbAA-BERK, which was given an arbitrary value of 1. ***P < .001 (Student t test). (G) Tryptase levels in the supernatant of skin-derived mast cells after incubation with vehicle (Veh) or SP for indicated time. Black bars, HbAA-BERK; red bars, HbSS-BERK. *P < .05, **P < .01 vs corresponding HbAA-BERK; #P < .05 vs vehicle HbSS-BERK (ANOVA, with Bonferroni). (H-I) Skin-derived mast cells incubated with imatinib mesylate (Imat, 10 μM) and/or morphine sulfate (MS, 1 μM) for 24 hours. Culture medium showing tryptase (H) and SP (I) levels. *P < .05, **P < .01, ***P < .001 vs corresponding HbAA-BERK, #P < .05, ##P < .01 vs HbSS-BERK vehicle, $P < .05, $$P < .01 vs HbAA-BERK vehicle (Student t test). Each value is the mean ± SEM of 5 mice of each type, and each image represents images from the skin or skin-derived mast cells from 5 different mice. Lucile Vincent et al. Blood 2013;122:1853-1862 ©2013 by American Society of Hematology

Mast cell activation contributes to neuro-inflammation in SCA Mast cell activation contributes to neuro-inflammation in SCA. (A-K) HbSS-BERK mice were treated with saline (Veh), CS, or imatinib mesylate (Imat) for 5 days followed by analysis as indicated with each figure. Mast cell activation contributes to neuro-inflammation in SCA. (A-K) HbSS-BERK mice were treated with saline (Veh), CS, or imatinib mesylate (Imat) for 5 days followed by analysis as indicated with each figure. (A) Representative images of Toluidine blue–stained dorsal skin sections. n = 6; bar = 100 μm. (B) Ratio of degranulating/total mast cells. *P < .01 vs HbAA-BERK, #P < .05 vs HbSS-BERK Veh (ANOVA, with Bonferroni). (C-D) Levels of tryptase, β-hexosaminidase (β-hex), SAP, SP, and CGRP expressed as the percentage of HbAA-BERK values. Red bars, HbSS-veh; magenta bars, HbSS-CS; blue bars, HbSS-Imat. *P < .05, **P < .01 vs HbAA-BERK, #P < .05, ##P < .01 vs HbSS-BERK Veh (ANOVA, with Bonferroni). (E-F) Cytokine released following 24 hours of incubation of skin from mice treated with vehicle or imatinib for 5 days. Black bars, HbAA-BERK Veh; red bars, HbSS-BERK Veh; blue bars, HbSS-BERK imatinib. Values are expressed as a percent of HbAA (E) or HbSS veh (F). *P < .05, **P < .01 vs HbAA-BERK Veh (E) or HbSS-BERK Veh (F) (Student t test). (G) Linear regression analysis of the expression of plasma GM-CSF and total WBC counts. (H-K) Neuropeptide release from the skin (H-I) and DRG (J-K) following 24 hours in culture. *P < .05, **P < .01 vs HbAA-BERK (H,J). *P < .05 vs HbSS-BERK Veh, **P < .01 vs HbSS-BERK Veh (I,K) (ANOVA, with Bonferroni). Each value is the mean ± SEM of 6 mice per group (in B-K). (L) Percentage of degranulating mast cells in DRG of mice treated with vehicle or imatinib for 5 days. *P < .001 vs HbAA-BERK Veh, #P < .05 vs HbSS-BERK Veh (ANOVA, with Bonferroni). (M-N) Representative confocal images showing coexpression of ATF3 (green) and GFAP (red). Scale bar, 100 µm; n = 6. Lucile Vincent et al. Blood 2013;122:1853-1862 ©2013 by American Society of Hematology

Neurogenic inflammation occurs in SCA Neurogenic inflammation occurs in SCA. (A-B) Evans blue leakage evoked by injection of saline, capsaicin, or SP in the hind paws (A) and dorsal skin (B) of mice treated with vehicle (saline), morphine sulfate (MS, 10 mg/kg), CS (100 mg/kg), or imatinib (Ima... Neurogenic inflammation occurs in SCA. (A-B) Evans blue leakage evoked by injection of saline, capsaicin, or SP in the hind paws (A) and dorsal skin (B) of mice treated with vehicle (saline), morphine sulfate (MS, 10 mg/kg), CS (100 mg/kg), or imatinib (Imat, 100 mg/kg). (C-D) Evans blue leakage. *P < .05, **P < .01 vs HbSS-BERK Veh, #P < .05, ##P < .01 vs HbAA-BERK Veh (ANOVA with Bonferroni). (E) Measures of cutaneous blood flow. **P < .01 (Student t test). (F) Temperature of the dorsal skin of mice with representative thermogram. *P < .05 (Student t test). (G) Calibration bar used. Lucile Vincent et al. Blood 2013;122:1853-1862 ©2013 by American Society of Hematology

Mast cells contribute to hyperalgesia in SCA Mast cells contribute to hyperalgesia in SCA. (A-D) HbSS-BERK mice were treated with vehicle (Veh), CS, or imatinib (Imat). Mast cells contribute to hyperalgesia in SCA. (A-D) HbSS-BERK mice were treated with vehicle (Veh), CS, or imatinib (Imat). On day 5, measures of pain were recorded 30 min after the injection of morphine (MS) or phosphate-buffered saline (PBS) as shown in (D). Measures of deep pain (A), mechanical hyperalgesia (B), and thermal sensitivity (C) are shown. BL, baseline obtained before the treatments. *P < .05, **P < .01 versus BL (ANOVA, with Bonferroni). #P < .05, ##P < .01 vs PBS for each corresponding treatment (Student t test). Each value is the mean ± SEM from 8 mice with 3 observations per mouse. (D) Treatment protocol. HbAA-BERK and HbSS-BERK mice were treated with saline, CS, or imatinib sulfate for 5 days. At day 5, a single injection of morphine sulfate or PBS was given and pain behaviors were followed for 240 min. i.p., intraperitoneal; s.c., subcutaneous; red arrow, pain testing. (E-J) Pain-related behaviors of age-matched HbAA BERK, HbSS-BERK, KitW/Wv (W/Wv), and HbSS-KitW/Wv (HbSS-W/Wv) mice. Each value is the mean ± SEM from 4-6 mice with 3 observations per mouse. *P < .05, **P < .01, ***P < .001 vs HbSS-BERK (ANOVA, with Bonferroni). Lucile Vincent et al. Blood 2013;122:1853-1862 ©2013 by American Society of Hematology

Mast cell activation contributes to hypoxia/reoxygenation-induced pain in SCA. (A-C) HbAA- and HbSS-BERK mice were treated with saline (Veh) or imatinib (imat) for 5 days. Mast cell activation contributes to hypoxia/reoxygenation-induced pain in SCA. (A-C) HbAA- and HbSS-BERK mice were treated with saline (Veh) or imatinib (imat) for 5 days. All mice were then treated with 3 hours hypoxia and 1 hour reoxygenation (H/R). Pain measures were obtained before starting the drug treatments on day 0 (D0), at the conclusion of drug treatments, D5 before inciting H/R, immediately after H/R, and 24 hours after H/R as indicated by red arrows in the schema in (G). Measures of deep pain (A), mechanical hyperalgesia (B), and thermal sensitivity (C) are shown. ¶P < .05, ¶¶P < .001 versus D0 of matched treatment; #P < .05, ##P < .001 vs D5 pre-H/R of matched treatment; *P < .05, **P < .01 versus HbSS Veh (ANOVA, with Bonferroni). Each value is the mean ± SEM from 6 mice with 3 observations per mouse. (D-F) Pain-related behaviors from age-matched HbSS-BERK and HbSS-KitW/Wv (HbSS-W/Wv) mice before (baseline, BL), immediately after (Post H/R), and 1 day post-H/R. *P < .05, **P < .01, ***P < .001 vs HbSS-BERK of matched pain-testing time point; #P < .05 vs HbSS-BERK BL; ¶P < .05 vs HbSS-W/Wv BL (Student t test). Each value is the mean ± SEM of 5 mice. Lucile Vincent et al. Blood 2013;122:1853-1862 ©2013 by American Society of Hematology

Activated mast cells contribute to a feed-forward cycle of neuropeptide release in the skin of sickle mice. Activated mast cells contribute to a feed-forward cycle of neuropeptide release in the skin of sickle mice. (1) Tryptase from mast cells activates PAR2 on the peripheral nerve endings. (2) Activation of PAR2 sensitizes transient receptor potential vanilloid 1 (TRPV1). (3) Excited nociceptors stimulate the release of CGRP and SP from the sensory nerve endings. (4) CGRP interacts with the type 1 CGRP receptor on arterioles to induce dilatation. (5) Substance P activates plasma extravasation via neurokinin 1 (NK1) receptors. (6) SP released from nerve endings as well as from mast cells also acts on the mast cells themselves, thus promoting a vicious cycle of mast cell activation. Lucile Vincent et al. Blood 2013;122:1853-1862 ©2013 by American Society of Hematology