Optical levitation of high purity nanodiamonds in vacuum

Slides:



Advertisements
Similar presentations
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Advertisements

Focus: Detecting vortices/turbulence in pure superfluid 4 He at T
Shanhui Fan, Shanshan Xu, Eden Rephaeli
Surface-electrode ion trap with integrated light source Tony Hyun Kim Chuang group 2011 April 5.
Nitrogen-Vacancy Center in Diamonds Physics and Magnetometry.
Nonlinear microwave optics in superconducting quantum circuits Zachary Dutton Raytheon BBN Technologies BBN collaborators Thomas Ohki John Schlafer Bhaskar.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
End of 2007 SPECTRAP’ is being built in London to trap Ca+ ions with real imaging capabilities Early RF operation expected Jan 2008 Penning operation Feb/Mar.
Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley,
Long-lived spin coherence in silicon with electrical readout
Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Ultrafast Pulsed Laser Gates for Atomic Qubits J OINT Q UANTUM I NSTITUTE with David Hayes, David Hucul, Le Luo, Andrew Manning, Dzmitry Matsukevich, Peter.
The Promise of Quantum Information. SPS Detector X Detector Y Path A Path B Paths A & B going toward Y destructively interfere: Y never fires Quantum.
Silicon-based Quantum Computation Cheuk Chi Lo Kinyip Phoa Dept. of EECS, UC Berkeley C191 Final Project Presentation Nov 30, 2005.
1 Solid Light: trapping photons in photonic crystals Andrew D. Greentree School of Physics University of Melbourne July Lecture in Physics July
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
A two-qubit conditional quantum gate with single spins F.Jelezko, J. Wrachtrup I. Popa, T. Gaebel, M. Domhan, C. Wittmann Univ. of Stuttgart.
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
Chad Orzel Union College Physics Radioactive Background Evaluation by Atom Counting C. Orzel Union College Dept. of Physics and Astronomy D. N. McKinsey.
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
Entanglement in the Kondo Spin Chain Abolfazl Bayat 1, Sougato Bose 1, Pasquale Sodano 2 1 University College London, London, UK. 2 University of Perugia,
Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences,
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
ULTRA-BROAD BANDWIDTH CAVITY ENHANCED ABSORPTION SPECTROSCOPY Paul S. Johnston Kevin K. Lehmann Department of Chemistry University of Virginia.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
One Dimensional Bosons in a Harmonic trap Sung-po Chao Rutgers University 2008/02/20 Journal club.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Gavin W Morley, Spin qubits in silicon and diamond, QuICC Warwick, August 2015 Donor qubits in silicon Gavin W Morley University of Warwick Experiments.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS )
CONSTRUCTION OF A RAMAN TWEEZER SYSTEM FOR INVESTIGATION OF BIOLOGICAL MOLECULES Günay Başar İstanbul Teknik Üniversitesi International.
Daniel Craft, Dr. John Colton, Tyler Park, Phil White, Brigham Young University.
A Quantum Computer in a Diamond Grant Riley. Outline Requirements for a quantum computer Chemical Vapor Deposition Diamonds – Properties – Impurities.
Simulation of Terrestrial Gamma Ray and Neutron Flashes (Small variations of thundercloud dipole moment) L.P. Babich, Е.N. Donskoĭ, A.Y. Kudryavtsev, M.L.
Muhammad Firmansyah Kasim University of Oxford, UK PhD Supervisors: Professor Peter Norreys & Professor Philip Burrows University of Oxford, UK AWAKE Collaboration.
Testing the quantum superposition principle 1. Motivation: Test Collapse models Collapse models: CSL, GRW, Schroedinger-Newton, Diosi-Penrose, …
The ballistic free-fall absolute gravimeter FG5#202  Accuracy : g ( g = 9, 8xx xxx xX m/s²)  1 µgal [= 10 nm/s²]  Vertical displacement of 3.
L. Corner and T. Hird John Adams Institute for Accelerator Science, Oxford University, UK 1AAC, USA, 2016 The efficient generation of radially polarised.
Deterministic preparation and control of a few fermion system.
Lecture 6 Radiative Transition in Atoms, Molecules & Insulators/Semiconductors Read: FQ 4, FS 3.
A10 Designing spin-spin interactions in cold ion crystals
Work package 3: Materials for energy
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum algorithm for the Laughlin wave function
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
RECONSTRUCTED CELL STRUCTURE Jakob Andreasson
Many-body Floquet systems & time-crystalline order
A. T. M. Anishur Rahman & Peter F. Barker
University of Oxford, U.K.*
Zhejiang Normal University
Cu2ZnSn(S,Se)4 Photovoltaics
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
İstanbul Teknik Üniversitesi
SRF Surface Studies and the High Field Q-slope Mystery
Some aspects of 1D Bose gases
NV centers in diamond: from quantum coherence to nanoscale MRI
Fiber-coupled Point Paul Trap
SYMPATHETIC SIDEBAND COOLING FOR MOLECULAR SPECTROSCOPY
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
2019/4/16 Search for liquid-metallic hydrogen under high temperature and high pressure Shimizu group M1 SHO Kawaguchi V. Dzyabura et al. PNAS, 110, 20,
Witness for Teleportation
Scientific Inquiry.
Advanced Optical Sensing
Intense laser beams Physics Nobel Prize 2018 awarded to Arthur Ashkin, Gérard Mourou and Donna Strickland Today’s speakers: Dr James Lloyd-Hughes and Dr.
Xiaopeng Min, Yin Wang (Advisor)
Fig. 1 Charge manipulation and readout in diamond.
Presentation transcript:

Optical levitation of high purity nanodiamonds in vacuum Gavin W Morley, University of Warwick

Acknowledgments Warwick University Angelo Frangeskou Anis Rahman (now UCL) Colin Stephen Guy Stimpson Yashna Lekhai University College London Peter Barker Sougato Bose Imperial College London Myungshik Kim Chuanqi Wan Cardiff University Laia Gines, Soumen Mandal, Oliver Williams

Outline Why diamond? Our results - Optically trapped diamonds heat up to destruction at 5 mbar - Pure nanodiamonds don’t heat up at 4 mbar

Nitrogen vacancy (NV-) centres in diamond 1. Introduction: why diamond? Nitrogen vacancy (NV-) centres in diamond Nitrogen Vacancy 637 nm Review: MW Doherty et al, Phys Rep 528, 1 (2013)

Nitrogen-vacancy centres without levitation 1. Introduction: why diamond? Nitrogen-vacancy centres without levitation

Nitrogen-vacancy (NV-) 1. Introduction: why diamond? Nitrogen-vacancy (NV-) Green excitation  Spin polarization  Spin readout

Levitating nanodiamonds in air 1. Introduction: why diamond? Levitating nanodiamonds in air - Berlin: atmospheric pressure, A Kuhlicke, AW Schell, J Zoll & O Benson, APL 105, 073101 (2014) - Paris: 10-2 mbar, T Delord, L Nicolas, L Schwab & G Hétet, NJP 19, 033031 (2017) + others ICFO, Barcelona: 0.5 mbar, G P Conangla, A W Schell, R A Rica & R Quidant, arXiv:1803.05527 - University College London: Peter Barker‘s group - Pittsburgh: 6.7 x 10-3 mbar, J-F Hsu, P Ji, CW Lewandowski & B D’Urso, Sci Rep 6, 30125 (2016) - Rochester: 1064 nm, >5 mbar, LP Neukirch, E von Haartman, JM Rosenholm & AN Vamivakas, Nat Photon 9, 653 (2015) + others - Purdue: 1550 nm, >10 mbar TM Hoang, J Ahn, J Bang & T Li, Nat Comms 7, 12250 (2016) + others Ion traps Magneto-gravitational trap Optical traps

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017) From other groups: - Z-q Yin, T Li, X Zhang & LM Duan, PRA 88, 033614 (2013)

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017)

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017)

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017)

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017)

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017)

drop a nanodiamond containing a spin 1. Introduction: why diamond? 2. Our work Our proposal: drop a nanodiamond containing a spin From our collaboration: - M Scala et al., PRL 111, 180403 (2013) - C Wan et al., PRA 93, 043852 (2016) - C Wan et al., PRL 117, 143003 (2016) - S Bose et al., PRL 119, 240401 (2017)

Spatial superposition needs high vacuum 1. Introduction: why diamond? 2. Our work Spatial superposition needs high vacuum

1. Introduction: why diamond? 2. Our work Our levitating nanodiamonds: optical trap with 40 nm diamonds and 1064 nm

Analytical model for interferometric balanced detection 1. Introduction: why diamond? 2. Our work Analytical model for interferometric balanced detection ATM Anishur Rahman, AC Frangeskou, PF Barker & GW Morley, Review of Scientific Instruments 89, 023109 (2018)

Analytical model for interferometric balanced detection 1. Introduction: why diamond? 2. Our work Analytical model for interferometric balanced detection ATM Anishur Rahman, AC Frangeskou, PF Barker & GW Morley, Review of Scientific Instruments 89, 023109 (2018)

Background: Brownian thermometry J Millen, T Deesuwan, P Barker & J Anders, Nature Nanotechnology 9, 425 (2014) ATM Anishur Rahman, AC Frangeskou, PF Barker & GW Morley, Review of Scientific Instruments 89, 023109 (2018)

Levitating nanodiamonds overheating 1. Introduction: why diamond? 2. Our work Levitating nanodiamonds overheating 20 mbar ATMA Rahman et al., Scientific Reports 6, 21633 (2016)

A solution: more pure diamonds 1. Introduction: why diamond? 2. Our work A solution: more pure diamonds 150 ppm nitrogen 120 ppb nitrogen impurities impurities AC Frangeskou, ATMA Rahman, L Gines, S Mandal, OA Williams, PF Barker & GW Morley, New Journal of Physics 20, 043016 (2018)

A solution: more pure nanodiamonds 1. Introduction: why diamond? 2. Our work A solution: more pure nanodiamonds 150 ppm nitrogen 120 ppb nitrogen impurities Milling by Ollie Williams’ group, Cardiff AC Frangeskou, ATMA Rahman, L Gines, S Mandal, OA Williams, PF Barker & GW Morley, New Journal of Physics 20, 043016 (2018)

A solution: more pure nanodiamonds 1. Introduction: why diamond? 2. Our work A solution: more pure nanodiamonds 4 mbar AC Frangeskou, ATMA Rahman, L Gines, S Mandal, OA Williams, PF Barker & GW Morley, New Journal of Physics 20, 043016 (2018)

Conclusion: Purer diamonds don’t heat up at 4 mbar AC Frangeskou, ATMA Rahman, L Gines, S Mandal, OA Williams, PF Barker & GW Morley, New Journal of Physics 20, 043016 (2018)

Conclusion: Outlook: Purer diamonds don’t heat up at 4 mbar AC Frangeskou, ATMA Rahman, L Gines, S Mandal, OA Williams, PF Barker & GW Morley, New Journal of Physics 20, 043016 (2018)

Outlook: