(Slides copied liberally from Ruth Anderson, Hal Perkins and others)

Slides:



Advertisements
Similar presentations
lec02-parserCFG March 27, 2017 Syntax Analyzer
Advertisements

CPSC Compiler Tutorial 4 Midterm Review. Deterministic Finite Automata (DFA) Q: finite set of states Σ: finite set of “letters” (input alphabet)
Context-Free Grammars Lecture 7
Prof. Bodik CS 164 Lecture 81 Grammars and ambiguity CS164 3:30-5:00 TT 10 Evans.
1 Foundations of Software Design Lecture 23: Finite Automata and Context-Free Grammars Marti Hearst Fall 2002.
Parsing — Part II (Ambiguity, Top-down parsing, Left-recursion Removal)
CPSC Compiler Tutorial 3 Parser. Parsing The syntax of most programming languages can be specified by a Context-free Grammar (CGF) Parsing: Given.
CSE 413 Programming Languages & Implementation Hal Perkins Autumn 2012 Context-Free Grammars and Parsing 1.
EECS 6083 Intro to Parsing Context Free Grammars
8/19/2015© Hal Perkins & UW CSEC-1 CSE P 501 – Compilers Parsing & Context-Free Grammars Hal Perkins Winter 2008.
1 Introduction to Parsing Lecture 5. 2 Outline Regular languages revisited Parser overview Context-free grammars (CFG’s) Derivations.
BİL 744 Derleyici Gerçekleştirimi (Compiler Design)1 Syntax Analyzer Syntax Analyzer creates the syntactic structure of the given source program. This.
Introduction to Parsing Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Grammars CPSC 5135.
Introduction to Parsing
Syntax Analysis - Parsing Compiler Design Lecture (01/28/98) Computer Science Rensselaer Polytechnic.
Unit-3 Parsing Theory (Syntax Analyzer) PREPARED BY: PROF. HARISH I RATHOD COMPUTER ENGINEERING DEPARTMENT GUJARAT POWER ENGINEERING & RESEARCH INSTITUTE.
1 A Simple Syntax-Directed Translator CS308 Compiler Theory.
Syntax Analyzer (Parser)
1 Pertemuan 7 & 8 Syntax Analysis (Parsing) Matakuliah: T0174 / Teknik Kompilasi Tahun: 2005 Versi: 1/6.
Compiler Construction Lecture Five: Parsing - Part Two CSC 2103: Compiler Construction Lecture Five: Parsing - Part Two Joyce Nakatumba-Nabende 1.
Syntax Analysis Or Parsing. A.K.A. Syntax Analysis –Recognize sentences in a language. –Discover the structure of a document/program. –Construct (implicitly.
CSE P501 – Compilers Parsing Context Free Grammars (CFG) Ambiguous Grammars Next Spring 2014Jim Hogg - UW - CSE - P501C-1.
Introduction to Parsing
Comp 411 Principles of Programming Languages Lecture 3 Parsing
CSE 3302 Programming Languages
Chapter 3 – Describing Syntax
lec02-parserCFG May 8, 2018 Syntax Analyzer
A Simple Syntax-Directed Translator
Introduction to Parsing
Parsing & Context-Free Grammars
CS 326 Programming Languages, Concepts and Implementation
CS 404 Introduction to Compiler Design
G. Pullaiah College of Engineering and Technology
Programming Languages Translator
CS510 Compiler Lecture 4.
Lexical and Syntax Analysis
Fall Compiler Principles Context-free Grammars Refresher
Chapter 3 Context-Free Grammar and Parsing
Introduction to Parsing (adapted from CS 164 at Berkeley)
Chapter 3 – Describing Syntax
Syntax Specification and Analysis
What does it mean? Notes from Robert Sebesta Programming Languages
Syntax versus Semantics
Compiler Construction (CS-636)
CSE 3302 Programming Languages
Lecture 3: Introduction to Syntax (Cont’)
Parsing & Context-Free Grammars Hal Perkins Autumn 2011
Compiler Design 4. Language Grammars
Top-Down Parsing CS 671 January 29, 2008.
Chapter 2: A Simple One Pass Compiler
Lecture 7: Introduction to Parsing (Syntax Analysis)
CSC 4181Compiler Construction Context-Free Grammars
R.Rajkumar Asst.Professor CSE
Programming Language Syntax 5
LL and Recursive-Descent Parsing Hal Perkins Autumn 2011
Introduction to Parsing
Introduction to Parsing
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
LL and Recursive-Descent Parsing
CSC 4181 Compiler Construction Context-Free Grammars
Fall Compiler Principles Context-free Grammars Refresher
BNF 9-Apr-19.
Parsing & Context-Free Grammars Hal Perkins Summer 2004
LL and Recursive-Descent Parsing Hal Perkins Autumn 2009
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
LL and Recursive-Descent Parsing Hal Perkins Winter 2008
lec02-parserCFG May 27, 2019 Syntax Analyzer
Parsing & Context-Free Grammars Hal Perkins Autumn 2005
COMPILER CONSTRUCTION
Presentation transcript:

(Slides copied liberally from Ruth Anderson, Hal Perkins and others) In More Depth… Grammars Parsing (Slides copied liberally from Ruth Anderson, Hal Perkins and others) 11/13/2018 CS415 - Fall 2005

Parsing The syntax of most programming languages can be specified by a context-free grammar (CGF) Parsing: Given a grammar G and a sentence w in L(G ), traverse the derivation (parse tree) for w in some standard order and do something useful at each node The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal 11/13/2018 CS415 - Fall 2005

Old Example a = 1 ; if ( a + 1 ) b = 2 ; G w program statement ifStmt program ::= statement | program statement statement ::= assignStmt | ifStmt assignStmt ::= id = expr ; ifStmt ::= if ( expr ) stmt expr ::= id | int | expr + expr Id ::= a | b | c | i | j | k | n | x | y | z int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Old Example G program statement ifStmt assignStmt expr expr expr int id id expr id expr a = 1 ; if ( a + 1 ) b = 2 ; w 11/13/2018 CS415 - Fall 2005

“Standard Order” For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right. (i.e., parse the program in linear time in the order it appears in the source file) 11/13/2018 CS415 - Fall 2005

Common Orderings Top-down Bottom-up Start with the root Traverse the parse tree depth-first, left-to-right (leftmost derivation) LL(k) Bottom-up Start at leaves and build up to the root Effectively a rightmost derivation in reverse(!) LR(k) and subsets (LALR(k), SLR(k), etc.) 11/13/2018 CS415 - Fall 2005

Top-down vs. bottom-up Consider the grammar (Scott, p. 49) id_list -> id id_list_tail id_list_tail -> , id id_list_tail id_list_tail -> ; And input text: A, B, C; 11/13/2018 CS415 - Fall 2005

11/13/2018 CS415 - Fall 2005

“Something Useful” At each point (node) in the traversal, perform some semantic action Construct nodes of full parse tree (rare) Construct abstract syntax tree (common) Construct linear, lower-level representation (more common in later parts of a modern compiler) Generate target code on the fly (1-pass compiler; not common in production compilers – can’t generate very good code in one pass) 11/13/2018 CS415 - Fall 2005

Context-Free Grammars Formally, a grammar G is a tuple <N,Σ,P,S> where N a finite set of non-terminal symbols Σ a finite set of terminal symbols P a finite set of productions A subset of N × (N U Σ )* S the start symbol, a distinguished element of N If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production 51min in lecture 3 11/13/2018 CS415 - Fall 2005

Standard Notations a, b, c elements of Σ w, x, y, z elements of Σ* A, B, C elements of N X, Y, Z elements of N U Σ , ,  elements of (N U Σ )* A  or A ::=  if <A,  > in P 11/13/2018 CS415 - Fall 2005

Derivation Relations (1)  A  =>    iff A ::=  in P derives A =>* w if there is a chain of productions starting with A that generates w transitive closure 11/13/2018 CS415 - Fall 2005

Derivation Relations (2) w A  =>lm w   iff A ::=  in P derives leftmost  A w =>rm   w iff A ::=  in P derives rightmost We will only be interested in leftmost and rightmost derivations – not random orderings 11/13/2018 CS415 - Fall 2005

Languages For A in N, L(A) = { w | A =>* w } If S is the start symbol of grammar G, define L(G ) = L(S ) 11/13/2018 CS415 - Fall 2005

Reduced Grammars Grammar G is reduced iff for every production A ::=  in G there is a derivation S =>* x A z => x  z =>* xyz i.e., no production is useless Convention: we will use only reduced grammars 11/13/2018 CS415 - Fall 2005

Ambiguity Grammar G is unambiguous iff every w in L(G ) has a unique leftmost (or rightmost) derivation Fact: unique leftmost or unique rightmost implies the other A grammar without this property is ambiguous Note that other grammars that generate the same language may be unambiguous We need unambiguous grammars for parsing 11/13/2018 CS415 - Fall 2005

Example: Ambiguous Grammar for Arithmetic Expressions expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Exercise: show that this is ambiguous How? Show two different leftmost or rightmost derivations for the same string Equivalently: show two different parse trees for the same string 11/13/2018 CS415 - Fall 2005

Example (cont) Give two leftmost derivations of 2+3*4 and show the parse tree expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 11/13/2018 CS415 - Fall 2005

Another example Give two different derivations of 5+6+7 expr ::= expr + expr | expr - expr | expr * expr | expr / expr | int int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 11/13/2018 CS415 - Fall 2005

What’s going on here? The grammar has no notion of precedence or associatively Solution Create a non-terminal for each level of precedence Isolate the corresponding part of the grammar Force the parser to recognize higher precedence sub-expressions first Au02: taken from one of Cooper’s slides 11/13/2018 CS415 - Fall 2005

Classic Expression Grammar expr ::= expr + term | expr – term | term term ::= term * factor | term / factor | factor factor ::= int | ( expr ) int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 11/13/2018 CS415 - Fall 2005

Check: Derive 2 + 3 * 4 expr ::= expr + term | expr – term | term term ::= term * factor | term / factor | factor factor ::= int | ( expr ) int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 11/13/2018 CS415 - Fall 2005

Check: Derive 5 + 6 + 7 Note interaction between left- vs right-recursive rules and resulting associativity expr ::= expr + term | expr – term | term term ::= term * factor | term / factor | factor factor ::= int | ( expr ) int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 11/13/2018 CS415 - Fall 2005

Check: Derive 5 + (6 + 7) expr ::= expr + term | expr – term | term term ::= term * factor | term / factor | factor factor ::= int | ( expr ) int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 11/13/2018 CS415 - Fall 2005

Another Classic Example Grammar for conditional statements ifStmt ::= if ( cond ) stmt | if ( cond ) stmt else stmt Exercise: show that this is ambiguous How? 11/13/2018 CS415 - Fall 2005

Two derivations of if-else ifStmt ::= if ( cond ) stmt | if ( cond ) stmt else stmt if ( cond ) if ( cond ) stmt else stmt 11/13/2018 CS415 - Fall 2005

Solving if Ambiguity Fix the grammar to separate if statements with else clause and if statements with no else Done in Java reference grammar Adds lots of non-terminals Use some ad-hoc rule in parser “else matches closest unpaired if” 11/13/2018 CS415 - Fall 2005

Parser Tools and Operators Most parser tools can cope with ambiguous grammars Makes life simpler if used with discipline Typically one can specify operator precedence & associativity 11/13/2018 CS415 - Fall 2005

Parser Tools and Ambiguous Grammars Possible rules for resolving other problems Earlier productions in the grammar preferred to later ones Longest match used if there is a choice The tools we will use allow for this But be sure that what the tool does is really what you want 11/13/2018 CS415 - Fall 2005