Volume 105, Issue 8, Pages (October 2013)

Slides:



Advertisements
Similar presentations
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Advertisements

Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Mechanical Stability and Reversible Fracture of Vault Particles
Kinetic Hysteresis in Collagen Folding
Dejun Lin, Alan Grossfield  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Volume 101, Issue 4, Pages (August 2011)
Volume 109, Issue 2, Pages (July 2015)
Unsteady Motion, Finite Reynolds Numbers, and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag  Sangjin.
Dynamics of Active Semiflexible Polymers
pH-Controlled Two-Step Uncoating of Influenza Virus
Volume 113, Issue 12, Pages (December 2017)
Volume 107, Issue 11, Pages (December 2014)
Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods  Alexander Cartagena, Arvind Raman 
Susanne Karsch, Deqing Kong, Jörg Großhans, Andreas Janshoff 
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Volume 111, Issue 2, Pages (July 2016)
Volume 101, Issue 2, Pages (July 2011)
Iftach Nir, Diana Huttner, Amit Meller  Biophysical Journal 
Volume 96, Issue 2, Pages (January 2009)
Stiffness Tomography by Atomic Force Microscopy
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Christopher Deufel, Michelle D. Wang  Biophysical Journal 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Volume 112, Issue 2, Pages (January 2017)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Volume 111, Issue 7, Pages (October 2016)
Volume 107, Issue 7, Pages (October 2014)
Shamik Sen, Shyamsundar Subramanian, Dennis E. Discher 
Volume 103, Issue 2, Pages (July 2012)
Martin Clausen, Michael Koomey, Berenike Maier  Biophysical Journal 
Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells
Margaret J. Tse, Brian K. Chu, Mahua Roy, Elizabeth L. Read 
Volume 99, Issue 8, Pages (October 2010)
Volume 96, Issue 5, Pages (March 2009)
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Mechanical Control of Bacterial Cell Shape
Irina V. Dobrovolskaia, Gaurav Arya  Biophysical Journal 
Untangling the Influence of a Protein Knot on Folding
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Dynamics of Active Semiflexible Polymers
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Ion-Induced Defect Permeation of Lipid Membranes
Volume 91, Issue 2, Pages (July 2006)
Volume 108, Issue 10, Pages (May 2015)
R. Gueta, D. Barlam, R.Z. Shneck, I. Rousso  Biophysical Journal 
Eric R. May, Jun Feng, Charles L. Brooks  Biophysical Journal 
Bending and Puncturing the Influenza Lipid Envelope
Volume 113, Issue 10, Pages (November 2017)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
The Role of Network Architecture in Collagen Mechanics
Actin Filament Strain Promotes Severing and Cofilin Dissociation
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
A New Angle on Microscopic Suspension Feeders near Boundaries
Volume 114, Issue 6, Pages (March 2018)
pH-Controlled Two-Step Uncoating of Influenza Virus
Volume 93, Issue 8, Pages (October 2007)
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Mareike Zink, Helmut Grubmüller  Biophysical Journal 
Volume 110, Issue 12, Pages (June 2016)
Jocelyn Étienne, Alain Duperray  Biophysical Journal 
Presentation transcript:

Volume 105, Issue 8, Pages 1893-1903 (October 2013) Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico  Olga Kononova, Joost Snijder, Melanie Brasch, Jeroen Cornelissen, Ruxandra I. Dima, Kenneth A. Marx, Gijs J.L. Wuite, Wouter H. Roos, Valeri Barsegov  Biophysical Journal  Volume 105, Issue 8, Pages 1893-1903 (October 2013) DOI: 10.1016/j.bpj.2013.08.032 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 The CCMV capsid. (A) AFM image of a CCMV capsid (zmax = 30 nm, scale bar = 20 nm). (B) Structure of CCMV (PDB:1CWP): (blue) protein domains forming pentamers; (red and orange) the same protein domains in hexamers. To see this figure in color, go online. Biophysical Journal 2013 105, 1893-1903DOI: (10.1016/j.bpj.2013.08.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Indentation of the CCMV capsid in vitro (A and B) and in silico along two-, three-, and five-fold symmetry axes (C and D). Shown in different colors are the most representative trajectories of forced indentation. The force (F)-distance (Z) profiles obtained from experimental AFM measurements for vf = 0.6 and 6.0 μm/s are compared with the theoretical FZ curves obtained for vf = 0.5 and 1.0 μm/s (Rtip = 20 nm). (Black dash-dotted control lines) Cantilever deforming against the glass surface. (C and D, insets) FX profiles. The values of critical force (F∗, force peaks), transition distance (Z∗), and indentation depth (X∗) are varying. The FZ curves with a single (several) force peak represent single-step (multistep) indentation transitions. To see this figure in color, go online. Biophysical Journal 2013 105, 1893-1903DOI: (10.1016/j.bpj.2013.08.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 (A) Log-linear plot of the spring constant of CCMV capsid kcap versus the cantilever velocity vf. The experimental data (from Snijder et al. (38)) are compared with the results of simulations. (B and C) Reversible and irreversible deformation of the CCMV capsid obtained experimentally for vf = 6.0 μm/s (B), and theoretically for vf = 1.0 μm/s (C). Deforming the capsid with a small force of ∼0.3 nN (experiment) and ∼0.5 nN (simulations) resulted in the reversible mechanical deformation with no hysteresis. Increasing the force beyond ∼0.5 nN led to the irreversible deformation: the forward indentation (solid curves) and backward retraction (dotted curves) do not follow the same path (hysteresis). A slight offset in forward and backward indentation can be seen in the experimental curves, resulting from the directional switching of the piezo. To see this figure in color, go online. Biophysical Journal 2013 105, 1893-1903DOI: (10.1016/j.bpj.2013.08.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 Indentation in silico of CCMV capsid along the two-fold symmetry axis (see also Fig. S1). (Red and blue) The two trajectories. The cantilever tip (Rtip = 20 nm) indents the capsid in the direction perpendicular to the capsid surface (vf = 1.0 μm/s). (Solid and dotted curves) Results for the forward deformation and backward retraction, respectively; results obtained for vf = 25 μm/s are shown for comparison (dashed black curve). (A) The FX curves. (Gray line) Linear fit of the curve in the elastic regime (X < 3–5 nm). (B) Capsid spring constant, kcap versus X. (C) Structure overlap ξ versus X. (Inset) Time-dependence of ξ for the backward retraction, which quantifies the progress of capsid restructuring. (D) The enthalpy change ΔH and entropy change TΔS from the FX curves generated for vf = 1.0 μm/s (dashed curve of ΔH generated for vf = 25 μm/s is presented for comparison). (Inset) Equilibrium energy change ΔG along the reaction coordinate X from Umbrella Sampling calculations. Also shown are the CCMV capsid structures (top view and profile) for different extents of indentation. (Red) Tip-capsid surface contact area (see also Fig. S1). To see this figure in color, go online. Biophysical Journal 2013 105, 1893-1903DOI: (10.1016/j.bpj.2013.08.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 Nonequilibrium dynamics of the CCMV shell: shown are the displacement of pentamers (shown in blue) and hexamers (shown in red) and the structures for the first two modes of the collective excitations (black arrows), projected along the reaction coordinate (large arrow) in the elastic regime (A) and transition regime (B). For each mode, the upper structure is the reference state. In the lower structure, we showed the type and amplitude of displacement by juxtaposing the conformation with the reference state (shown in gray color). To see this figure in color, go online. Biophysical Journal 2013 105, 1893-1903DOI: (10.1016/j.bpj.2013.08.032) Copyright © 2013 Biophysical Society Terms and Conditions