Baryonic and Dark Matter

Slides:



Advertisements
Similar presentations
Realistic photometric redshifts Filipe Batoni Abdalla.
Advertisements

The Kilo-Degree Survey Konrad Kuijken Leiden Observatory.
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
KIDS: mapping the universe with weak lensing Konrad Kuijken, Leiden.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
K.S. Dawson, W.L. Holzapfel, E.D. Reese University of California at Berkeley, Berkeley, CA J.E. Carlstrom, S.J. LaRoque, D. Nagai University of Chicago,
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Dark Energy with 3D Cosmic Shear Dark Energy with 3D Cosmic Shear Alan Heavens Institute for Astronomy University of Edinburgh UK with Tom Kitching, Patricia.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
Progress on Cosmology Sarah Bridle University College London.
Title people CHIME: the Canadian Hydrogen Intensity Mapping Experiment. Mark Halpern Kris Sigurdson Sigi Stiemer Tom Landecker Jeff Peterson Dick Bond.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni Martin Kilbinger Andisheh Mahdavi.
Cosmic shear results from CFHTLS Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni.
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
The dark universe SFB – Transregio Bonn – Munich - Heidelberg.
1 System wide optimization for dark energy science: DESC-LSST collaborations Tony Tyson LSST Dark Energy Science Collaboration meeting June 12-13, 2012.
Francisco Javier Castander Serentill Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE/CSIC) Barcelona Exploiting the.
DARK ENERGY IN SPACE: WFIRST AND EUCLID RACHEL BEAN (CORNELL UNIVERSITY) ON BEHALF OF THE PHYSPAG DARK ENERGY COMMUNITY Image Credit: NASA/GSFC Image Credit:
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
1 Imaging Surveys: Goals/Challenges May 12, 2005 Luiz da Costa European Southern Observatory.
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
LSST and Dark Energy Dark Energy - STScI May 7, 2008 Tony Tyson, UC Davis Outline: 1.LSST Project 2.Dark Energy Measurements 3.Controlling Systematic Errors.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
The Large Synoptic Survey Telescope and Precision Studies of Cosmology David L. Burke SLAC C2CR07 Granlibakken, California February 26, 2007 Brookhaven.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Cosmology with ESO telescopes Bruno Leibundgut. Outline Past and current cosmology projects with ESO telescopes Future instrumentation capabilities (interferometry?)
Gravitational Lensing
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Surveys with OmegaCAM / VST KIDS Koen Kuijken, Leiden.
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27, 2006.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
CTIO Camera Mtg - Dec ‘03 Studies of Dark Energy with Galaxy Clusters Joe Mohr Department of Astronomy Department of Physics University of Illinois.
Cheng Zhao Supervisor: Charling Tao
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
Measuring Cosmic Shear Sarah Bridle Dept of Physics & Astronomy, UCL What is cosmic shear? Why is it hard to measure? The international competition Overview.
Astronomy toolkits and data structures Andrew Jenkins Durham University.
Thomas Collett Institute of Astronomy, Cambridge
Towards the first detection using SPT polarisation
Cosmology with gravitational lensing
The Dark Energy Survey Probe origin of Cosmic Acceleration:
Weak Lensing Flexion Alalysis by HOLICs
DEEP LENS SURVEY Long term dual hemisphere campaign
Thomas Collett Institute of Astronomy, Cambridge
Cosmological Constraints from the Double-
Princeton University & APC
Weak lensing tomography: the good, the bad and the ugly
Complementarity of Dark Energy Probes
Probing the Dark Universe with Weak Gravitational Lensing
Some issues in cluster cosmology
Cosmology from Large Scale Structure Surveys
Photometric Redshift Training Sets
The Square Kilometre Array A technology-enabled approach to `Hubble Volume’ Redshift Surveys A phased roll-out of an array that has seriously started.
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Cosmology with Photometric redsfhits
KDUST暗能量研究 詹虎 及张新民、范祖辉、赵公博等人 KDUST 宇宙学研讨会 国台,
6-band Survey: ugrizy 320–1050 nm
Cosmology with Galaxy Correlations from Photometric Redshift Surveys
Constraining Dark Energy with the Large Synoptic Survey Telescope
Presentation transcript:

Baryonic and Dark Matter Next Generation Surveys: Scientific, Observational and Instrumental Challenges Andy Taylor Institute for Astronomy, School of Physics University of Edinburgh, UK Gray & Taylor et al 2005 11/13/2018 IoP-RAS Meeting

11/13/2018 IoP-RAS Meeting

Outline Scientific aims of future surveys Overview of future surveys Challenges for future surveys Summary 11/13/2018 IoP-RAS Meeting

Outline Scientific aims of future surveys Overview of future surveys Challenges for future surveys Summary 11/13/2018 IoP-RAS Meeting

Aims of Lensing Surveys What are the scientific challenges for lensing? Astrophysical: Galaxy halo properties (galaxy-galaxy, galaxy-quasar) Clusters & filaments (mass mapping vs Xray & starlight) High-redshift Universe (gravitational telescopes) Fundamental: Dark Matter properties ( DM mass & interactions, neutrino mass) Dark Energy properties (EoS, evolution) Initial conditions (s8, ns, dns/dlnk) Testing Einstein Gravity 11/13/2018 IoP-RAS Meeting

Properties of Dark Matter Cold Dark Matter: Mass – break in matter power spectrum Thermal properties – resolve smallest halos with shear and flexion. Neutrinos Mass – another scale length in matter power spectrum from free-streaming. 11/13/2018 IoP-RAS Meeting

Residual systematics (“B modes”) Baryonic & Dark Matter in COSMOS Residual systematics (“B modes”) Blue: stellar mass Yellow: galaxy number Red: hot gas B-mode map 11/13/2018 IoP-RAS Meeting Massey, et al, Nature, 2007

COSMOS 3-D Dark Matter Maps Photon equation of motion: Right Ascension Redshift 0.0 0.2 0.4 0.6 0.8 Declination Cosmic Web – bottom up scenario – clusters then filaments then walls (membranes). Note that filaments not well traced by galaxies & too ephemeral to emit x-rays, so lensing only way to detect. 11/13/2018 IoP-RAS Meeting Massey, et al, Nature (2007)

Observable Effects of Dark Energy Geometry: DE changes the photon distance-redshift relation: r(z) Angular diameter distance DA Luminosity Distance DL Dynamics: Alters the growth of density perturbations, d(t). r(z) z w = 0 w = -1 d r 11/13/2018 IoP-RAS Meeting

Constraining w from the CMB + Supernova Energy-density scales with expansion as Close to a Cosmological Constant. (assumes flat Universe) Spergel et al ApJ 2006 11/13/2018 IoP-RAS Meeting

Constraining w from the CMB + Supernova + Lensing from CFHT Energy-density scales with expansion as Close to a Cosmological Constant. (assumes flat Universe) Spergel et al ApJ 2006, Tereno et al 2006 11/13/2018 IoP-RAS Meeting

Initial Conditions - Inflation Spergel et al. ApJ, 2006 11/13/2018 IoP-RAS Meeting

Testing Einstein Gravity Three tests of gravity: Model testing. Eg, DGP, TeVeS, braneworld. Generalized Einstein metric Consistency Relations: Geometric wG versus Dynamic wD. 11/13/2018 IoP-RAS Meeting

Outline Scientific aims of future surveys Overview of future surveys Challenges for future surveys Summary 11/13/2018 IoP-RAS Meeting

Timeline Lensing (+z) Spec IR Space 2004 SDSS/AAOmega CFHTLS DEEP2 2006 LAMOST Pan-STARRS-1 UKIDSS VST-KIDS VIKING/VHS Planck 2009 Pan-STARRS-4 DES WFMOS JWST JWST 2011 HSC/Subaru VIRUS 2012 2013 SNAP/JEDI/ADEPT/Destiny? 2014 LSST 2015 2016 DUNE DUNE DUNE 2018 2019 SKA (Radio) SKA (Radio) 2025 ELT 11/13/2018 IoP-RAS Meeting

2003-2008: CFHTLS Canada-France-Hawaii 3.6m Telescope Mauna Kea 40 CCD, 340 Mpixels 1 sq deg MegaCam Surveys: Wide: 170 sq deg u*g’r’i’z’, i’=24.5 Deep: 4 sq deg, r’=28 11/13/2018 IoP-RAS Meeting

2007-2010: Pan-STARRS-1 Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). Hawaii, MPIA, Taiwan, Harvard, Johns Hopkins, UK (Edinburgh, Belfast, Durham), 1.8 meter primary 1.4Gpixel camera. 7 sq deg fov. Medium Deep Survey 3p Survey g, r, i, z, y (r=24.5) PS4 – 4xPS1 (2009). 11/13/2018 IoP-RAS Meeting

2008-2013: VST-KIDS & VIKING ESO’s Kilo-Degree Survey 2m primary 184Mpixels 1sqdeg fov OmegaCAM 1,500 sq deg u’g’r’i’z’ VIKING (VISTA Kilo-degree INfrared Galaxy survey) 1500 sq deg in parallel on VISTA Z,Y,J,H,Ks 11/13/2018 IoP-RAS Meeting

2010-2015: DES The Dark Energy Survey. 4-metre Blanco at CTIO (South) 500 Megapixel, 3 sqdeg fov camera 5 yr survey (30% of time). g,r,i,z over 5000 sq deg r = 24.1 (10sig) 4 dark energy probes: WL, BAOs, SN & Clusters 11/13/2018 IoP-RAS Meeting

2011-2016: Subaru-HyperSuprimeCam 8.3m Primary 3.14 sq deg fov 1.4 Gpixel camera HyperSuprimeCam 3500 sq deg/year ~17,500 sq deg (5 yrs) ugriz? ? 11/13/2018 IoP-RAS Meeting

2014-2024: LSST Large Synoptic Survey Telescope (LSST) 8.4m (effectively 6.5m) Primary 3.2 Gpixel, 9.6 sq deg fov camera ugrizY Cerro Pachon, Chile 30Tbyte per night 11/13/2018 IoP-RAS Meeting

2017-2021: DUNE – Dark UNiverse Explorer Proposal to ESA Cosmic Visions programme. 1.2m satellite telescope r-i-z + Y,J,H 0.5 sq deg fov 3-year weak lensing survey: 20,000 sq deg AB=24.5 (10sig), zm=0.9 n0=35/sq arcmin Ground-based optical complement needed for photo-z’s. 11/13/2018 IoP-RAS Meeting

2020-2025: SKA Square Kilometre Array (SKA) Radio interferometer. Frequency range 100 MHz - 25 GHz 1 sq deg fov (1.4GHz) - 200 sq deg (0.7GHz) 20,000 sqdeg zm~1.0 sz=0 (spec) n0=10/sqarcmin (useable HI sources) 11/13/2018 IoP-RAS Meeting

Grasp for optical surveys Grasp vs. Start Date SKA~108 103 102 10 1 LSST HSC PS4 DES Grasp (D2*fov) Dark Energy Survey Pan-STARRS-1 PS1 Grasp for optical surveys doubles every ~2.5 yrs CFHT VST-KIDS 170 sq deg DUNE 1700 sq deg 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 11/13/2018 IoP-RAS Meeting Start Date

Survey Area vs. End Date 104 103 102 PS1 PS4 DUNE LSST SKA HSC DES [sqdeg] Dark Energy Survey Pan-STARRS-1 VST-KIDS 170 sq deg CFHT-W 1700 sq deg 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 End Date 11/13/2018 IoP-RAS Meeting

Depth (Median Redshift) Survey Depth vs. Area 104 103 102 PS1 DUNE PS4/ SKA LSST HSC DES Area [sqdeg] VST-KIDS Constant Time CFHT-W 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Depth (Median Redshift) 11/13/2018 IoP-RAS Meeting

Dark Energy Figure of Merit (FoM) Dark Energy Task Force Figure of Merit: Define pivot redshift, zp: wa w(z) wp Cosmic Web – bottom up scenario – clusters then filaments then walls (membranes). Note that filaments not well traced by galaxies & too ephemeral to emit x-rays, so lensing only way to detect. Dw0 w = -1 zp z 11/13/2018 IoP-RAS Meeting

3-D Shear Power Background sources Dark matter halos Observer (e.g. Heavens 2003, Kitching, Heavens & Taylor 2005) Observer Dark matter halos Background sources Cosmic Web – bottom up scenario – clusters then filaments then walls (membranes). Note that filaments not well traced by galaxies & too ephemeral to emit x-rays, so lensing only way to detect. 11/13/2018 IoP-RAS Meeting

3-D Shear Ratios (Jain & Taylor 2003, Taylor, Kitching, Bacon, Heavens 2005) Background sources Dark matter halos Observer Cosmic Web – bottom up scenario – clusters then filaments then walls (membranes). Note that filaments not well traced by galaxies & too ephemeral to emit x-rays, so lensing only way to detect. Signal depends on (Wm, Wv, w0, wa) and is insensitive to clustering. 11/13/2018 IoP-RAS Meeting

FoM for Dark Energy from Lensing 3-D shear power and shear-ratios combined with Planck Explorer CMB survey (2008) Current limit 1/FoM CFHT KIDS PS1 SKA DES HSC PS4 Cosmic Web – bottom up scenario – clusters then filaments then walls (membranes). Note that filaments not well traced by galaxies & too ephemeral to emit x-rays, so lensing only way to detect. FoM doubles every 2.5 yrs DUNE LSST Saturation 11/13/2018 IoP-RAS Meeting 2023 (with Tom Kitching) End Date

Outline Scientific aims of future surveys Overview of future surveys Challenges for future surveys Summary 11/13/2018 IoP-RAS Meeting

(Taylor, Kitching & Heavens, 2006) Effect of Systematics What is the effect of systematics in results? Can estimate effect using Fisher Matrix formalism: Eg for a straight line zero-point fit: y b db 11/13/2018 IoP-RAS Meeting x (Taylor, Kitching & Heavens, 2006)

Image Distortions Image distortions: (Kitching, Taylor & Heavens 2007) calibration rotation bias. 11/13/2018 IoP-RAS Meeting

Image Distortions Image distortions: calibration, rotation, bias. Effect of these on constant w: Shear Power: no 1st order effect from gbias: Shear-ratios: No bias to 1st order. Require: 11/13/2018 IoP-RAS Meeting

Observational Challenges Photometric redshifts: calibration, bias, outliers zphot zspec Abdalla et al (2007) 11/13/2018 (Abdalla et al, 2007; Kitching, Taylor & Heavens 2007) IoP-RAS Meeting

Observational Challenges Photometric redshifts: calibration, bias, outliers Can estimate bias effect from Fisher analysis: Shear Power: Shear-ratios: Shear-ratio: 11/13/2018 IoP-RAS Meeting

Photometric Redshift Challenges 5-optical + 3-IR? VST-KIDS/VIKING. Do we need U-band? VST-KIDS Calibration with spectroscopic surveys How many? 105? VLT, WFMOS, ELTs? Need synergy with IR & spectroscopic surveys. Abdalla et al (2007) 11/13/2018 IoP-RAS Meeting

Intrinsic Alignment Challenges Two alignment effects: Intrinsic-Intrinsic alignments Galaxy-Intrinsic alignment 11/13/2018 IoP-RAS Meeting (Bridle & King, 2007; Kitching, Taylor & Heavens 2007)

Intrinsic Alignment Challenges Model using Heymans et al (2006). Find no effect on shear-ratio signal (averaged out), but enters noise. Minimal effect on shear-power (but see Bridle & King 2007). Using signal where alignment contribution is small. 11/13/2018 IoP-RAS Meeting

Marginalize over Nuisance Parameters Use data to estimate these parameters (self-calibration). Marginalisation over uncertainties will increase error: w Dwmarg Dwcond gbias 11/13/2018 IoP-RAS Meeting

Marginalize over Nuisance Parameters Effect of marginalisation over image distortion uncertainties, for Shear + Ratios + Planck: For a DUNE mission FoM (Dwp): Shear Power Shear-Ratio Combined Baseline 500 (0.015) 150 (0.024) 915 (0.012) Pz+IA+g 116 (0.03) 70 (0.03) 670 (0.014) 0.1% prior 440 (0.02) 100 (0.028) 900 (0.012) Mostly photo-z’s Mostly Image Distortions (Kitching, Taylor & Heavens 2007) 11/13/2018 IoP-RAS Meeting

Nonlinear Matter Distribution Non-linear matter power spectrum. Fitting functions not accurate Need MC N-body sims Baryons? Non-Gaussian corrections to the shear field. Covariance of power (4pt-fn) Higher-order correlations Non-Gaussian likelihoods log Clgg log l P(k) k 11/13/2018 IoP-RAS Meeting

Data Analysis Challenges Tera/Pico-Bytes of data to push through pipeline. (eg. LSST raw=1500GB & Cats=400GB) 4 layers: Data acquisition, book keeping Raw Data Reduction (registration) Shape analysis (KSB++, shapelets, K2K, automated) Science analysis (map making, power spectra, etc) How do we simulate large dynamic range? And Monte-Carlo surveys ~1000 times? c.f. CMB temperature & polarisation experiments (see A. Challinor’s Talk). 11/13/2018 IoP-RAS Meeting

Organizational Challenges How to coordinate the effort? EU Research-Training Network. DUEL (Dark Universe with Extragalactic Lensing) Exploit Cosmological Lensing from CFHTLS, Pan-STARRS, VST-KIDS Plan for future surveys (DUNE…) 8 Network Partners: Edinburgh, Paris, Bonn, Heidelberg, Munich, Leiden, Naples, British Columbia 7 Postdocs & 7 PhD students across network. Training & exchange of methods & data. 11/13/2018 IoP-RAS Meeting

Conclusions Map dark matter in 3-D over all sky to z=1. Expect DE FoM to double every 2.5 years. Dark Energy probes saturate beyond z=1. Bias in nuisance parameters biases w. Self-calibration leads to doubling of errors. Can add extra priors, or combine WL methods. Optical/IR, Photo-z/Spec-z, Ground-Space synergies Major challenges in data analysis lie ahead! 11/13/2018 IoP-RAS Meeting