H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I

Slides:



Advertisements
Similar presentations
Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells  E. López-Ruiz, M. Perán, J.
Advertisements

BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium- derived progenitor cells cultured in three-dimensional alginate hydrogel 
CCN family 2/connective tissue growth factor (CCN2/CTGF) stimulates proliferation and differentiation of auricular chondrocytes  T. Fujisawa, Ph.D., D.D.S.,
Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC- derived chondrocytes  R.S. Rainbow, H. Kwon, A.T. Foote, R.C. Preda, D.L.
Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
L. Pesesse, C. Sanchez, D. A. Walsh, J. -P. Delcour, C. Baudouin, P
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell- delivery vehicle  C.D. Hoemann, Ph.D., J. Sun, M.D., A. Légaré, M.Sc.,
Identification of small molecular compounds and fabrication of its aqueous solution by laser-ablation, expanding primordial cartilage  D. Ikegami, T.
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels  N.
Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation  B.C. Sondergaard,
Tumor risk by tissue engineering: cartilaginous differentiation of mesenchymal stem cells reduces tumor growth  I. Akay, D. Oxmann, A. Helfenstein, R.
A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair  M.B. Schmidt, Ph.D.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport.
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
The layered structure of the articular surface
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
T. Kimura, T. Ozaki, K. Fujita, A. Yamashita, M. Morioka, K. Ozono, N
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method  Dr. K. Masuda, M.D., B.E.
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
C. Zingler, H.-D. Carl, B. Swoboda, S. Krinner, F. Hennig, K. Gelse 
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
Utility of T2 mapping and dGEMRIC for evaluation of cartilage repair after allograft chondrocyte implantation in a rabbit model  J. Endo, A. Watanabe,
Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor  H. Tanoue, J. Morinaga, T. Yoshizawa,
S.D. Waldman, J. Usprech, L.E. Flynn, A.A. Khan 
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Luis A. Solchaga, Ph. D. , Johnna S. Temenoff, Ph. D. , Jizong Gao, M
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells  M.E. Casper, J.S. Fitzsimmons, J.J.
A novel in vivo murine model of cartilage regeneration
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Heinz-J. Hausser, Ph.D., Ralf Decking, M.D., Rolf E. Brenner, M.D. 
Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs  J.T. Connelly, Ph.D., C.G. Wilson,
M. Durigova, M.Sc., P.J. Roughley, Ph.D., J.S. Mort, Ph.D. 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Identification of molecular markers for articular cartilage
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term.
Volume 12, Issue 2, Pages (August 2005)
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Engineering of cartilage in recombinant human type II collagen gel in nude mouse model in vivo  H.J. Pulkkinen, V. Tiitu, P. Valonen, J.S. Jurvelin, M.J. Lammi, I. Kiviranta  Osteoarthritis and Cartilage  Volume 18, Issue 8, Pages 1077-1087 (August 2010) DOI: 10.1016/j.joca.2010.05.004 Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Results from the preliminary study in vitro. The macroscopical appearance after 4 weeks in vitro cultivation of the rhCII gels (A). The bar=5mm. Type II collagen immunostaining of rhCII gels immediately after gel preparation (B) and after 4 weeks of cultivation in vitro (C), the bar=70μm. Safranin O stainings from the preliminary study after 4 weeks in vitro cultivation of bovine chondrocytes within rh type I collagen (D), rhCII (E), and rh type III collagen gels (F). The bar=400μm (40× magnifications). Osteoarthritis and Cartilage 2010 18, 1077-1087DOI: (10.1016/j.joca.2010.05.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 The photograph A shows the location of injection sites of (1) rhCII-gel without cells (rhCII-gel); (2) bovine chondrocytes in rhCII-gel (rhCII-cell); and (3) bovine chondrocytes in growth medium (Med-cell). The subcutaneous injections were carried out on anesthetized mice (A). Implantation sites of rhCII-gel (B) and rhCII-cell (C) 6 weeks after the implantation. A closer macroscopic view of the rhCII-cell construct (D) and Med-cell (E) after 6 weeks. The bar=5mm. Osteoarthritis and Cartilage 2010 18, 1077-1087DOI: (10.1016/j.joca.2010.05.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Toluidine blue stainings showing extracellular matrix 6 weeks after subcutaneous injections. The chondrocytes seeded in rhCII (rhCII-cell) (A). A higher magnification of the rhCII construct (B). The chondrocytes in growth medium (Med-cell) (C). A higher magnification of the Med-cell construct (D). The bar=1000μm (A and B, 40× magnifications), the bar=50μm (C and D, 100× magnifications). Immunostaining for type II collagen showed a strong signal in cell-seeded rhCII constructs (rhCI-cell), particularly around the chondrocytes, suggesting accumulation of collagen type II (E), while non-cartilaginous areas negative for type II collagen were visible in scaffold-free constructs (Med-cell) (F). Negative controls treated with BSA in rhCII (G) and scaffold-free (H) constructs are shown. The bar=50μm (100× magnifications). Osteoarthritis and Cartilage 2010 18, 1077-1087DOI: (10.1016/j.joca.2010.05.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Immunostaining for type I collagen with hematoxylin counterstaining in rhCII-cell (A) and Med-cell (B). A light red staining is detected through the specimens in both samples. Developing bone (red staining indicated by arrow) in the mouse embryo was stained as a positive control (C). Negative controls treated with BSA for rhCII-cell (D), Med-cell (E) and mouse embryo (F) are also shown. The bar=100μm (100× magnifications). Osteoarthritis and Cartilage 2010 18, 1077-1087DOI: (10.1016/j.joca.2010.05.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Type X collagen immunostaining in rhCII-cell (A), and Med-cell (B) with positive control indicating type X collagen in the hypertrophic cartilage in mouse embryo (C). ALP enzymehistochemical staining in rhCII-cell constructs (D), and Med-cell constructs (E) and positive control showing hypertrophic cartilage in mouse embryo (F). Masson’s trichrome staining of rhCII-cell (G), and Med-cell constructs (H). In the positive control bovine articular cartilage is stained blue and bone red (I). The bar=100μm (100× magnifications). Osteoarthritis and Cartilage 2010 18, 1077-1087DOI: (10.1016/j.joca.2010.05.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Toluidine blue-stained sections from rhCII-cell (A) and scaffold-free Med-cell (D) constructs are shown as a reference for FTIR-IS analysis (B and E, respectively). The organization of collagen network, evaluated by parallelism, was evaluated by polarized light microscopy of the rhCII-cell (C) and Med-cell constructs (F). The color scale in B and E indicates the content of collagen (blue is low and red high content), while the scale in C and F indicates the collagen parallelism (red is low and blue high degree of parallelism). Scale bars are shown in the pictures. Photograph G of agarose gel electrophoresis. Agarose gel electrophoresis of extracted proteoglycans shows the similarity in proteoglycan mobility of the rhCII-cell and Med-cell constructs with bovine articular cartilage proteoglycans. Lane 1: rhCII-cell, lane 2: Med-cell, lane 3: bovine cartilage extract, lane 4: chondroitin sulfate C, lane 5: papain-digested cartilage proteoglycans. Osteoarthritis and Cartilage 2010 18, 1077-1087DOI: (10.1016/j.joca.2010.05.004) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions