CS621: Artificial Intelligence

Slides:



Advertisements
Similar presentations
Multi-Layer Perceptron (MLP)
Advertisements

CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 11, 12: Perceptron Training 30 th and 31 st Jan, 2012.
1 Neural networks. Neural networks are made up of many artificial neurons. Each input into the neuron has its own weight associated with it illustrated.
Multilayer Perceptrons 1. Overview  Recap of neural network theory  The multi-layered perceptron  Back-propagation  Introduction to training  Uses.
1 Chapter 11 Neural Networks. 2 Chapter 11 Contents (1) l Biological Neurons l Artificial Neurons l Perceptrons l Multilayer Neural Networks l Backpropagation.
CHAPTER 11 Back-Propagation Ming-Feng Yeh.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
CS621: Artificial Intelligence Lecture 24: Backpropagation Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CS623: Introduction to Computing with Neural Nets (lecture-10) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
Artificial Neural Networks
Neural Networks AI – Week 23 Sub-symbolic AI Multi-Layer Neural Networks Lee McCluskey, room 3/10
 Diagram of a Neuron  The Simple Perceptron  Multilayer Neural Network  What is Hidden Layer?  Why do we Need a Hidden Layer?  How do Multilayer.
LINEAR CLASSIFICATION. Biological inspirations  Some numbers…  The human brain contains about 10 billion nerve cells ( neurons )  Each neuron is connected.
Artificial Intelligence Techniques Multilayer Perceptrons.
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
CS 478 – Tools for Machine Learning and Data Mining Backpropagation.
1 Chapter 11 Neural Networks. 2 Chapter 11 Contents (1) l Biological Neurons l Artificial Neurons l Perceptrons l Multilayer Neural Networks l Backpropagation.
A note about gradient descent: Consider the function f(x)=(x-x 0 ) 2 Its derivative is: By gradient descent. x0x0 + -
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31: Feedforward N/W; sigmoid.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 30: Perceptron training convergence;
Multi-Layer Perceptron
Non-Bayes classifiers. Linear discriminants, neural networks.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29: Perceptron training and.
Instructor: Prof. Pushpak Bhattacharyya 13/08/2004 CS-621/CS-449 Lecture Notes CS621/CS449 Artificial Intelligence Lecture Notes Set 4: 24/08/2004, 25/08/2004,
Back-Propagation Algorithm AN INTRODUCTION TO LEARNING INTERNAL REPRESENTATIONS BY ERROR PROPAGATION Presented by: Kunal Parmar UHID:
CS621 : Artificial Intelligence
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32: sigmoid neuron; Feedforward.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21: Perceptron training and convergence.
EEE502 Pattern Recognition
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 25: Backpropagation and Application.
Previous Lecture Perceptron W  t+1  W  t  t  d(t) - sign (w(t)  x)] x Adaline W  t+1  W  t  t  d(t) - f(w(t)  x)] f’ x Gradient.
Chapter 6 Neural Network.
CS623: Introduction to Computing with Neural Nets (lecture-9) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CS621 : Artificial Intelligence
CSE343/543 Machine Learning Mayank Vatsa Lecture slides are prepared using several teaching resources and no authorship is claimed for any slides.
Neural networks.
Fall 2004 Backpropagation CS478 - Machine Learning.
Learning in Neural Networks
CS623: Introduction to Computing with Neural Nets (lecture-5)
Real Neurons Cell structures Cell body Dendrites Axon
CSE 473 Introduction to Artificial Intelligence Neural Networks
Announcements HW4 due today (11:59pm) HW5 out today (due 11/17 11:59pm)
Machine Learning Today: Reading: Maria Florina Balcan
CSC 578 Neural Networks and Deep Learning
Data Mining with Neural Networks (HK: Chapter 7.5)
Classification Neural Networks 1
CS623: Introduction to Computing with Neural Nets (lecture-2)
CS621: Artificial Intelligence Lecture 17: Feedforward network (lecture 16 was on Adaptive Hypermedia: Debraj, Kekin and Raunak) Pushpak Bhattacharyya.
of the Artificial Neural Networks.
Perceptron as one Type of Linear Discriminants
Artificial Neural Networks
Neural Network - 2 Mayank Vatsa
Pushpak Bhattacharyya Computer Science and Engineering Department
CS623: Introduction to Computing with Neural Nets (lecture-4)
CS 621 Artificial Intelligence Lecture 25 – 14/10/05
Capabilities of Threshold Neurons
CS623: Introduction to Computing with Neural Nets (lecture-9)
Pushpak Bhattacharyya Computer Science and Engineering Department
CS621 : Artificial Intelligence
CS621: Artificial Intelligence
CS623: Introduction to Computing with Neural Nets (lecture-5)
Computer Vision Lecture 19: Object Recognition III
CS623: Introduction to Computing with Neural Nets (lecture-3)
CS344 : Introduction to Artificial Intelligence
CS621: Artificial Intelligence Lecture 22-23: Sigmoid neuron, Backpropagation (Lecture 20 and 21 taken by Anup on Graphical Models) Pushpak Bhattacharyya.
David Kauchak CS158 – Spring 2019
Prof. Pushpak Bhattacharyya, IIT Bombay
CS621: Artificial Intelligence Lecture 14: perceptron training
CS621: Artificial Intelligence Lecture 18: Feedforward network contd
CS621: Artificial Intelligence Lecture 17: Feedforward network (lecture 16 was on Adaptive Hypermedia: Debraj, Kekin and Raunak) Pushpak Bhattacharyya.
Presentation transcript:

CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 44– Multilayer Perceptron Training: Sigmoid Neuron; Backpropagation 9th Nov, 2010

The Perceptron Model . Output = y Threshold = θ w1 wn Wn-1 x1 Xn-1 y = 1 for Σwixi >=θ = 0 otherwise Threshold = θ w1 wn Wn-1 x1 Xn-1

y 1 θ Σwixi

Perceptron Training Algorithm Start with a random value of w ex: <0,0,0…> Test for wxi > 0 If the test succeeds for i=1,2,…n then return w 3. Modify w, wnext = wprev + xfail

Feedforward Network

Limitations of perceptron Non-linear separability is all pervading Single perceptron does not have enough computing power Eg: XOR cannot be computed by perceptron

Solutions Tolerate error (Ex: pocket algorithm used by connectionist expert systems). Try to get the best possible hyperplane using only perceptrons Use higher dimension surfaces Ex: Degree - 2 surfaces like parabola Use layered network

Pocket Algorithm Algorithm evolved in 1985 – essentially uses PTA Basic Idea: Always preserve the best weight obtained so far in the “pocket” Change weights, if found better (i.e. changed weights result in reduced error).

XOR using 2 layers Non-LS function expressed as a linearly separable function of individual linearly separable functions.

Example - XOR = 0.5 w1=1 w2=1  Calculation of XOR x1x2 x1x2 x1 x2 1 Calculation of x1x2 = 1 w1=-1 w2=1.5 x1 x2

Example - XOR = 0.5 w1=1 w2=1 x1x2 1 1 x1x2 1.5 -1 -1 1.5 x1 x2

Some Terminology A multilayer feedforward neural network has Input layer Output layer Hidden layer (assists computation) Output units and hidden units are called computation units.

Training of the MLP Multilayer Perceptron (MLP) Question:- How to find weights for the hidden layers when no target output is available? Credit assignment problem – to be solved by “Gradient Descent”

Can Linear Neurons Work? h2 h1 x2 x1

Claim: A neuron with linear I-O behavior can’t compute X-OR. Note: The whole structure shown in earlier slide is reducible to a single neuron with given behavior Claim: A neuron with linear I-O behavior can’t compute X-OR. Proof: Considering all possible cases: [assuming 0.1 and 0.9 as the lower and upper thresholds] For (0,0), Zero class: For (0,1), One class:

A linear neuron can’t compute X-OR. For (1,0), One class: For (1,1), Zero class: These equations are inconsistent. Hence X-OR can’t be computed. Observations: A linear neuron can’t compute X-OR. A multilayer FFN with linear neurons is collapsible to a single linear neuron, hence no a additional power due to hidden layer. Non-linearity is essential for power.

Multilayer Perceptron

Training of the MLP Multilayer Perceptron (MLP) Question:- How to find weights for the hidden layers when no target output is available? Credit assignment problem – to be solved by “Gradient Descent”

Gradient Descent Technique Let E be the error at the output layer ti = target output; oi = observed output i is the index going over n neurons in the outermost layer j is the index going over the p patterns (1 to p) Ex: XOR:– p=4 and n=1

Weights in a FF NN wmn is the weight of the connection from the nth neuron to the mth neuron E vs surface is a complex surface in the space defined by the weights wij gives the direction in which a movement of the operating point in the wmn co-ordinate space will result in maximum decrease in error m wmn n

Sigmoid neurons Gradient Descent needs a derivative computation - not possible in perceptron due to the discontinuous step function used!  Sigmoid neurons with easy-to-compute derivatives used! Computing power comes from non-linearity of sigmoid function.

Derivative of Sigmoid function

Training algorithm Initialize weights to random values. For input x = <xn,xn-1,…,x0>, modify weights as follows Target output = t, Observed output = o Iterate until E <  (threshold)

Calculation of ∆wi

Observations Does the training technique support our intuition? The larger the xi, larger is ∆wi Error burden is borne by the weight values corresponding to large input values

Backpropagation on feedforward network

Backpropagation algorithm …. Output layer (m o/p neurons) j wji …. i Hidden layers …. …. Input layer (n i/p neurons) Fully connected feed forward network Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

Backpropagation – for outermost layer

Backpropagation for hidden layers …. Output layer (m o/p neurons) k …. j Hidden layers …. i …. Input layer (n i/p neurons) k is propagated backwards to find value of j

Backpropagation – for hidden layers

General Backpropagation Rule General weight updating rule: Where for outermost layer for hidden layers

How does it work? Input propagation forward and error propagation backward (e.g. XOR) w2=1 w1=1 = 0.5 x1x2 -1 x1 x2 1.5 1