Dept of Physics and Astronomy University of Glasgow, UK

Slides:



Advertisements
Similar presentations
Further Inference in the Multiple Regression Model Hill et al Chapter 8.
Advertisements

Dark energy workshop Copenhagen Aug Why the SNLS ? Questions to be addressed: -Can the intrinsic scatter in the Hubble diagram be further reduced?
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Nikolaos Nikoloudakis Friday lunch talk 12/6/09 Supported by a Marie Curie Early Stage Training Fellowship.

Measuring the local Universe with peculiar velocities of Type Ia Supernovae MPI, August 2006 Troels Haugbølle Institute for Physics.
Deriving and fitting LogN-LogS distributions Andreas Zezas Harvard-Smithsonian Center for Astrophysics.
The spatial clustering of X-ray selected AGN R. Gilli Istituto Nazionale di Astrofisica (INAF) Osservatorio Astronomico di Bologna On behalf of the CDFS.
On the Distribution of Dark Matter in Clusters of Galaxies David J Sand Chandra Fellows Symposium 2005.
Proper-Motion Membership Determinations in Star Clusters Dana I. Dinescu (Yale U.)
Modeling the 3-point correlation function Felipe Marin Department of Astronomy & Astrophysics University of Chicago arXiv: Felipe Marin Department.
Business Statistics - QBM117 Statistical inference for regression.
Regression Eric Feigelson. Classical regression model ``The expectation (mean) of the dependent (response) variable Y for a given value of the independent.
Chapter 4 Hypothesis Testing, Power, and Control: A Review of the Basics.
I N T R O D U C T I O N The mechanism of galaxy formation involves the cooling and condensation of baryons inside the gravitational potential well provided.
Robust cosmological constraints from SDSS-III/BOSS galaxy clustering Chia-Hsun Chuang (Albert) IFT- CSIC/UAM, Spain.
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
17 may 04leonidas moustakas STScI 1 High redshift (z~4) galaxies & clustering Lexi Moustakas STScI.
Constraining the Dark Side of the Universe J AIYUL Y OO D EPARTMENT OF A STRONOMY, T HE O HIO S TATE U NIVERSITY Berkeley Cosmology Group, U. C. Berkeley,
Intrinsic ellipticity correlation of luminous red galaxies and misalignment with their host dark matter halos The 8 th Sino – German workshop Teppei O.
The Black-Hole – Halo Mass Relation and High Redshift Quasars Stuart Wyithe Avi Loeb (The University of Melbourne) (Harvard University) Fan et al. (2001)
Black hole binaries are standard sirens
The clustering of galaxies detected by neutral hydrogen emission Sean Passmoor Prof. Catherine Cress Image courtesy of NRAO/AUI and Fabian Walter, Max.
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
Cosmological parameters from peculiar velocities
Measuring dark energy from galaxy surveys Carlton Baugh Durham University London 21 st March 2012.
Constraining Cosmology with Peculiar Velocities of Type Ia Supernovae Cosmo 2007 Troels Haugbølle Institute for Physics & Astronomy,
Gravitational Redshift in Clusters of Galaxies Marton Trencseni Eotvos University, Budapest.
Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White.
Γαλαξίες – 3 Υπερμαζικές Μαύρες Τρύπες στα κέντρα γαλαξιών 15 Ιανουαρίου 2013.
INTRODUCTION TO Machine Learning 3rd Edition
Luminosity Functions from the 6dFGS Heath Jones ANU/AAO.
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
23 Sep The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun Peking Univ./ CPPM.
Chapter 10 The t Test for Two Independent Samples.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
April 3, 2005 The lens redshift distribution – Constraints on galaxy mass evolution Eran Ofek, Hans-Walter Rix, Dan Maoz (2003)
E  L Comma galaxies. The Cosmic Runner (Park et al. 2005; Choi et al. 2010)
Cosmological Constraints from the SDSS maxBCG Cluster Sample Eduardo Rozo UC Berkeley, Feb 24, 2009.
Environmental Dependence of Brightest Cluster Galaxy Evolution Sarah Brough, Liverpool John Moores University Chris Collins, Liverpool John Moores University.
Dark Matter and Rotational Motion e.t. revised feb 09.
Luminous Red Galaxies in the SDSS Daniel Eisenstein ( University of Arizona) with Blanton, Hogg, Nichol, Tegmark, Wake, Zehavi, Zheng, and the rest of.
Gravitational Lensing
Feasibility of detecting dark energy using bispectrum Yipeng Jing Shanghai Astronomical Observatory Hong Guo and YPJ, in preparation.
Statistical biases in extragalactic distance determinations. G. Paturel, Observatoire de Lyon In collaboration with P. Teerikorpi IHP Avril 2005.
Carlos Hernández-Monteagudo CE F CA 1 CENTRO DE ESTUDIOS DE FÍSICA DEL COSMOS DE ARAGÓN (CE F CA) J-PAS 10th Collaboration Meeting March 11th 2015 Cosmology.
Mapping the Mass with Galaxy Redshift-Distance Surveys Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK “Mapping the Mass”: Birmingham,
MEASUREING BIAS FROM UNBIASED OBSERVABLE SEOKCHEON LEE (KIAS) The 50 th Workshop on Gravitation and Numerical INJE Univ.
Cosmic Momentum Field and Matter Fluctuation Study of Matter through Motions of Galaxies Changbom Park (Korea Institute for Advanced Study)
Some bonus cosmological applications of BigBOSS ZHANG, Pengjie Shanghai Astronomical Observatory BigBOSS collaboration meeting, Paris, 2012 Refer to related.
Biased total mass of CC galaxy clusters by SZE measurements Andrea Conte Astronomy PhD, XXIII Cycle “Sapienza” University of Rome. School of Astrophysics.
3D Matter and Halo density fields with Standard Perturbation Theory and local bias Nina Roth BCTP Workshop Bad Honnef October 4 th 2010.
Bayesian analysis of joint strong gravitational lensing and dynamic galactic mass in SLACS: evidence of line-of-sight contamination Antonio C. C. Guimarães.
Constraints on cosmological parameters from the 6dF Galaxy Survey
Inference about the slope parameter and correlation
2MASS Tully-Fisher Survey
Do We Live Within a Large Local Void?
Peculiar Velocity Moments
Deriving and fitting LogN-LogS distributions An Introduction
Ch8: Nonparametric Methods
Cosmological Constraints from the Double-
Galaxy populations within clusters in the 2PIGG catalogue
Advisors: Tom Broadhurst, Yoel Rephaeli
...Relax... 9/21/2018 ST3131, Lecture 3 ST5213 Semester II, 2000/2001
Mapping the Dark Matter in the Local Universe
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Statistical Power.
Presentation transcript:

Dept of Physics and Astronomy University of Glasgow, UK The best of both worlds? Towards combining design-based and parametric approaches to analysing galaxy surveys Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK SAMSI: Mar 2006

Previous session: introduction to Malmquist bias and how it affects estimating galaxy distances ‘Malmquist Correction’ methods (very) parametric Optimal approach depends on what we are using galaxy distances for (there may be other systematic biases besides Malmquist anyhow). Example: using galaxy distances to estimate peculiar velocity field, and constrain the mean density of dark matter on large scales. Peculiar velocity = motion of a galaxy over and above the Hubble expansion, due to the gravitational influence of its surroundings. i.e. galaxy peculiar velocities trace the local density field of all matter – not just the luminous matter. How are the galaxy and mass distribution related?… SAMSI: Mar 2006

b = linear bias parameter, related to peculiar velocities via Simplest model: linear biasing b = linear bias parameter, related to peculiar velocities via So galaxy distances  peculiar velocities  to constrain Underlying density field of all matter Density field of luminous matter, (smoothed version of galaxy distribution) Dimensionless mean matter density of the Universe SAMSI: Mar 2006

Problem: Through the late 90s – early 00s: dichotomy of inferred values of and . Could discrepancy be down to problems with correcting for Malmquist bias?… Could a ‘design-based’ approach (c.f. Efron & Petrosian) help? Rauzy & Hendry (2000) - ROBUST method for fitting peculiar velocity field models SAMSI: Mar 2006

Robust Method Assumption: luminosity function is Universal Spatial distribution Selection effects Luminosity function Null hypothesis (Rauzy 2001) Angular and radial Selection function Step function SAMSI: Mar 2006

Robust Method: Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance modulus m . . . . . . . . . . . . . . . . . . . . Mlim(mi ) . . . . . . . . . . . . . . . (Mi, mi) . . . . . . . . . . . mlim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute magnitude M SAMSI: Mar 2006

Robust Method: Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance modulus m . . . . . . . . . . . . . . . . . . . . Mlim(mi ) . . . . . . . . . . . . . . . (Mi, mi) . . . . . . . . . . . mlim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1 . S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute magnitude M SAMSI: Mar 2006

Robust Method: Completeness m* > mlim SAMSI: Mar 2006

Robust Method: Completeness Define:- where Can show:- P1: P2: uncorrelated SAMSI: Mar 2006

Robust Method: Completeness Also:- but only for SAMSI: Mar 2006

Robust Method: Completeness Also:- but only for SAMSI: Mar 2006

Robust Method: Velocity Field Model Assuming define Can show:- P3: uncorrelated Estimate b via SAMSI: Mar 2006

Robust Method Strength: Robust support for VELMOD analysis: validity of inhomogeneous Malmquist corrections Weakness: Completeness requirement may restricts sample size and depth From Rauzy & Hendry 2000 SAMSI: Mar 2006

If we have the wrong LF model, P1 and P2 are not satisfied Rauzy, Hendry & D’Mellow (2001) P1: P2: and are independent If we have the wrong LF model, P1 and P2 are not satisfied SAMSI: Mar 2006

Define e.g. Schechter model, For each use K-S statistic to test P1: use sample correlation coefficient to test P2: Define

Define e.g. Schechter model, For each use K-S statistic to test P1: use sample correlation coefficient to test P2: Define

If the LF model is a good descriptor of the true distribution, c.f ML approach: If the LF model is a good descriptor of the true distribution, 2[Lmax – L(a,M*)] ~ c2 SAMSI: Mar 2006

If the LF model is a good descriptor of the true distribution, c.f ML approach: If the LF model is a good descriptor of the true distribution, 2[Lmax – L(a,M*)] ~ c2 ‘Toy’ evolution model: Gaussian LF, SAMSI: Mar 2006

If the LF model is a good descriptor of the true distribution, c.f ML approach: If the LF model is a good descriptor of the true distribution, 2[Lmax – L(a,M*)] ~ c2 ‘Toy’ evolution model: Gaussian LF, SAMSI: Mar 2006 Model rejected

Questions / Issues How sensitive are robust methods to measurement errors? How to extend to ‘fuzzy’ selection / truncation? How to extend to multi-dimensional cases? (e.g. bivariate distribution of luminosity, surface brightness) How to extend the K-S test to >1d? Can ROBUST be useful as a diagnostic of systematic errors? (e.g. where separability assumption breaks down) (What’s wrong with 2dF?) SAMSI: Mar 2006

Volume-limited subset of data Millennium galaxy catalog of Driver et al. (2003) Volume-limited subset of data

SAMSI: Mar 2006