Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Last Lecture Common collector Voltage gain and Current gain
Professor Ronald L. Carter
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Professor Ronald L. Carter
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
Sedr42021_0434.jpg Figure 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Reading: Finish Chapter 17,
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Last Lecture – MOS Transistor Review (Chap. #3)
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization EE5342, Lecture 23 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L23 02Apr09

Extracting RB and RE from fg data iB = (IS/BF)exp[(vBE,X - iB(RB+RE) - iCRE)/NF•Vt] + negligible terms. iB/iB = 1 = (iB/NF•Vt) (vBE,X/iB - (RB+RE) - REiC/iB) NF•Vt/iB = vBE,X/iB -(RB+RE) -REiC/iB y=vBE,X/iB-NF•Vt/iB=REiC/iB+(RB+RE) plot y vs. iC/iB, slope=RE, int.= RB+RE L23 02Apr09

Extraction of RE and RB from fg data The figure shows [vBE,X/iB-NF•Vt/iB] versus iC/iB From the slope, we have RE = 32 ohms. The intercept (RE = RB) is 77 ohms so RB = 45 ohm. Data generated from RB = 100 and RE = 1 L23 02Apr09

Extracting RB and RE from rg data iB = (IS/BR)exp[(vBC,X - iB(RB+RC) - iERC)/NR•Vt] + negligible terms. iB/iB = 1 = (iB/NR•Vt) (vBC,X/iB - (RB+RC) - RCiE/iB) NR•Vt/iB = vBC,X/iB -(RB+RC) -RCiE/iB y=vBC,X/iB-NR•Vt/iB=RCiE/iB+(RB+RC) plot y vs. iE/iB, slope=RC, int.= RB+RC L23 02Apr09

MOSFET equivalent circuit elements Fig 10.51* L23 02Apr09

MOS small-signal equivalent circuit Fig 10.52* L23 02Apr09

MOS channel- length modulation Fig 11.5* L23 02Apr09

Analysis of channel length modulation L23 02Apr09

Channel length mod- ulated drain char Fig 11.6* L23 02Apr09

Fully biased n- channel VT calc L23 02Apr09

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L23 02Apr09

L23 02Apr09

L23 02Apr09

L23 02Apr09

Values for fms with silicon gate L23 02Apr09

I-V relation for n-MOS ohmic ID non-physical ID,sat saturated VDS,sat L23 02Apr09

Analysis of channel length modulation L23 02Apr09

Associating the output conductance ID ID,sat VDS,sat VDS L23 02Apr09

n-channel enhancement MOSFET in ohmic region 0< VT< VG e- channel ele + implant ion Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- + + + + + + + + + + + + n+ Depl Reg p-substrate Acceptors VB < 0 L23 02Apr09

Ion implantation L23 02Apr09

“Dotted box” approx L23 02Apr09

L23 02Apr09

Mobilities L23 02Apr09

Fully biased n- channel VT calc L23 02Apr09

Subthreshold conduction Below O.S.I., when the total band-bending < 2|fp|, the weakly inverted channel conducts by diffusion like a BJT. Since VGS>VDS, and below OSI, then Na>nS >nD, and electr diffuse S --> D Electron concentration at Source Concentration gradient driving diffusion L23 02Apr09

Subthreshold current data Figure 10.1** Figure 11.4* L23 02Apr09

Mobility variation due to Edepl Figures 11.7,8,9* L23 02Apr09

Velocity saturation effects Figure 11.10* L23 02Apr09

References *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L23 02Apr09