Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.

Slides:



Advertisements
Similar presentations
Neurology Resident and Fellow Section
Advertisements

MRI and possible differentiating features with nonconventional MRI
Figure 2. A patient with multifocal nodular lesions diagnosed with CNS tuberculosis A patient with multifocal nodular lesions diagnosed with CNS tuberculosis.
Figure 2. MRI features of patients with MS who had antibodies to myelin oligodendrocyte glycoprotein MRI features of patients with MS who had antibodies.
Figure 4 Paradoxical immune reconstitution inflammatory syndrome
Nat. Rev. Neurol. doi: /nrneurol
Reversible posterior leukoencephalopathy syndrome and silent cerebral infarcts are associated with severe acute chest syndrome in children with sickle.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 4 Neuromyelitis optica spectrum disorder brain lesions
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 2 Association of serum IgG reactivity with MRI measures of disease severity Association of serum IgG reactivity with MRI measures of disease severity.
Figure 2 Orbital MRI findings One-third of myelin oligodendrocyte glycoprotein antibody–positive patients revealed extensive enhancement patterns that.
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure 3 Example of venous narrowing
Figure 2 Examples of lesions with and without central veins
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Prebiopsy and postbiopsy MRI
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure Longitudinal MRI study data demonstrating evolution of central pontine myelinolysis(A, B) Axial T2-weighted MRI of the brain from January 9, 2014,
Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.
A–C, Case 1. A–C, Case 1. Typical white matter changes involving the corpus callosum and the pyramidal tracts (A and C, arrows), dilation of the lateral.
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 1 Neuropathologic examination of brain areas with normal MRI appearance and with gadolinium enhancement (patient 1)‏ Neuropathologic examination.
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure MRI and neuropathologic characteristics of the tumefactive demyelinating lesion in our patient MRI and neuropathologic characteristics of the tumefactive.
Figure Radiologic and pathologic findings Fluid-attenuated inversion recovery (FLAIR) sequence with a single large T2-hyperintense signal involving the.
Figure 2 Example of venous narrowing
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Radiologic features of human myelin oligodendrocyte glycoprotein immunoglobulin G–positive patients with cranial nerve involvement Radiologic.
Figure 3. Brain imaging and neuropathologic studies in patient PT-5 diagnosed with progressive multifocal leukoencephalopathy Brain imaging and neuropathologic.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure Genetic deletion and MRI changes with EHMT1 deletion
Figure 1 Patients with acute anti–NMDA receptor encephalitis have marked hypometabolism of the visual cortical brain region correlating with the medial.
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Copyright © 2014 Elsevier Inc. All rights reserved.
Radiological findings of Posterior Reversible Encephalopathy Syndrome in transplanted children previous affected by hemoglobinopathy: A neuroimaging retrospective.
Figure 1 Radiologic features of patients with white matter syndromes in association with NMDA receptor antibodies Radiologic features of patients with.
Figure 1 MRI findings over time
Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing.
Figure 1 Representative spinal cord MRIs from patients with neuromyelitis optica Longitudinally extensive transverse myelitis of the cervical (A) and cervicothoracic.
Figure 2 Brain MRI at 1 year of age
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 1 Brain MRI features in patients with deletions upstream of LMNB1 Brain MRI features in patients with deletions upstream of LMNB1 All images are.
Figure Neurologic, gastrointestinal, and dermatologic findings
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 2 MRIs (cases 2 and 3)‏
Figure MRI demonstrating cerebellar encephalitis, longitudinally extensive transverse myelitis, and pathology of seminoma(A) Parasagittal T1 postcontrast.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 2 Patient 1 MRI evolution over time
Figure 1 MRI of both patients with IgG4-HP and spinal cord arteriography of the first patient MRI of both patients with IgG4-HP and spinal cord arteriography.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
MR scans of brain and spine: (A) sagittal T2 image showing signal change in the posterior spinal cord between C3 and T6. MR scans of brain and spine: (A)
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Chronic CNS-IRIS without coinfection.
Brain MRI performed with 1
Presentation transcript:

Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Brain fluid-attenuated inversion recovery (FLAIR) MRI performed on admission (A–C) revealed abnormally high intensity at the dorsal pons, bilateral insular cortex, and subcortical region in patient 1. According to FLAIR MRI, patient 2 and patient 4 had similar brain lesions, including abnormalities around the inferior horn of the lateral ventricle (D, J) and diffuse high intensity in the deep white matter of the frontotemporoparietal regions (E, K). These lesions are mainly confined to the white matter, as revealed by the relative sparing of the cortex, and are enhanced by gadolinium administration in T1-weighted MRI (F, L). In contrast, FLAIR MRI of patient 3 revealed patchy lesions in the subcortical area of the left temporal lobe (G) and in the basal ganglion (H). Contrast-enhanced FLAIR MRI revealed hyperintense lesions along the left central sulcus (I). Sagittal T2-weighted images depict an inhomogeneously hyperintense spinal cord, stretching from the cervico-occipital junction to the thoracic cord region (M). Yusuke Sakiyama et al. Neurol Neuroimmunol Neuroinflamm 2015;2:e143 © 2015 American Academy of Neurology