Trig Graphs And equations.

Slides:



Advertisements
Similar presentations
LG 2-3 Inverse Trig Functions
Advertisements

Section 4.7 Inverse Trigonometric Functions. A brief review….. 1.If a function is one-to-one, the function has an inverse that is a function. 2.If the.
EXAMPLE 1 Evaluate inverse trigonometric functions Evaluate the expression in both radians and degrees. a.cos –1 3 2 √ SOLUTION a. When 0 θ π or 0° 180°,
MTH 112 Elementary Functions (aka: Trigonometry) Review for the Final.
Solving Trigonometric Equations. First Degree Trigonometric Equations: These are equations where there is one kind of trig function in the equation and.
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
4.7 Inverse Trig Functions. By the end of today, we will learn about….. Inverse Sine Function Inverse Cosine and Tangent Functions Composing Trigonometric.
Trig Review. 1.Sketch the graph of f(x) = e x. 2.Sketch the graph of g(x) = ln x.
Values of the Trig Functions Reference angles and inverse functions (5.4)
Inverse Trigonometric
Sin, Cos, Tan with a calculator  If you are finding the sin, cos, tan of an angle that is not a special case (30, 60, 45) you can use your calculator.
Slide Inverse Trigonometric Functions Y. Ath.
Pg. 384/408 Homework See later slide. #2V stretch 3, H stretch 2, V shift up 2, H shift left π #4V Stretch 2, H shrink ½, V shift up 1,H shift right π/2.
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
Section 7-6 The Inverse Trigonometric Functions. Inverse Trig. Functions With the trigonometric functions, we start with an angle, θ, and use one or more.
Try this Locate the vertical asymptotes and sketch the graph of y = 2 sec x. 2. Locate the vertical asymptotes and sketch the graph of y = 3 tan.
Inverse Trig Functions Vocabulary Inverse Cosine Function (cos -1 ) – The function y=cos -1 x = Arccos x, if and only if x = cos y and 0 ≤ y ≤ π Inverse.
Inverse Trigonometric Functions
Analytic Trigonometry
Inverse Trigonometric Functions
Section 4.7 Inverse Trigonometric Functions
Trig/Precalc Chapter 5.7 Inverse trig functions
Analytic Trigonometry
Warm Up 4) 30° 5)
Unit 5: Introduction to Trigonometry Lesson 5: Evaluate Trig Functions
Solving Trigonometric Equations
Inverse Trigonometric Functions
Functions.
Reciprocal Trigonometric functions.
Trig addition formulae
Quadratics Completed square.
Some types of POLAR CURVES.
SOLVING TRIG EQUATIONS
Domain and range.
Find all solutions of the equation
Lesson 4.7 Inverse Trigonometric Functions
Splash Screen.
Splash Screen.
Analytic Trigonometry
Trigonometry Inverse functions
POLAR CURVES Tangents.
POLAR CURVES Intersections.
Inverse Trig = Solve for the Angle
Differentiation Gradient problems.
Challenging problems Area between curves.
Radian Measure.
Inverse Trig = Solve for the Angle

Solving Trigonometric Equations
Parametric equations Problem solving.
Methods in calculus.
Trig Equations.
Trig Equations.
Integration.
Functions Inverses.
Warm Up 30°±
Principal Values of the Inverse Trig Functions
Geometry Parametric equations.
Functions Inverses.
Chapter 9: Trigonometric Identities and Equations
The Inverse Trig FCTNS Function: y = arcsin x y = arccos x
Methods in calculus.
Trig Graphs And equations Revision A2.
Trig Graphs And equations Revision.
5.3 Solving Trigonometric Equations
POLAR CURVES Tangents.
Core 3 Trigonometry
Inverse Trig Functions Rita Korsunsky.
To solve sec you will first need to find cos , then use the reciprocal for secant.
Section 4.7.
Presentation transcript:

Trig Graphs And equations

Trigonometry Graphs to equations KUS objectives BAT know the key features of trig graphs using radians BAT solve trig equations using radians Starter: Simplify (without a calculator) sin 30 1+ 3 + 3 cos 60 2 sin 45 + cos 45 1+ 2 tan 150 1+ 3 − 3 tan 120

These are the Trigonometric graphs, but with radians instead… y y = sinθ 1 θ -360º -2π -270º -3π 2 -180º -π -90º -π 2 π 2 90º 180º π 3π 2 270º 360º 2π -1 y y = cosθ 1 θ -360º -2π -270º -3π 2 -180º -π -90º -π 2 π 2 90º 180º π 270º 3π 2 360º 2π -1 y = tanθ 1 θ -360º -2π -270º -3π 2 -180º -π -90º -π 2 π 2 90º 180º π 3π 2 270º 360º 2π -1

𝜋 WB11 Transformations of sin graph Sketch the graph of 𝒔𝒊𝒏 𝒙+ 𝝅 𝟐 y = sinθ 1 𝜋 2 𝜋 3𝜋 2 2𝜋 y -1 Sketch the graph of a) 𝐬𝐢𝐧 𝒙+ 𝝅 𝟐 b) 𝒔𝒊𝒏 𝒙 −𝟐 c) − 𝒔𝒊𝒏 𝟐𝒙 𝒔𝒊𝒏 𝒙+ 𝝅 𝟐 − 𝒔𝒊𝒏 𝟐𝒙 𝒔𝒊𝒏 𝒙 −𝟐 −𝟑 −𝟐

WB12b double transformations (ax+b) 𝑦 =2 cos 𝜃+ 3𝜋 2 y 1 -1 y = cosθ -2π -3π 2 -π -π 2 2π 3π 2 π π 2 𝑦 = cos 𝜃+ 3𝜋 2 Sketch the graph of a) 2cos 𝑥+ 3𝜋 2 Transformations in order are i) shift − 3𝜋 2 in the x direction ii) Stretch ×2 in the y direction

𝜋 WB12b double transformations (ax+b) y = sinθ 𝜋 2 2𝜋 3𝜋 2 2𝜋 y -1 Sketch the graph of b) sin 2𝑥−𝜋 𝒔𝒊𝒏 𝒙− 𝝅 𝟐 𝒔𝒊𝒏 𝟐 𝒙− 𝝅 𝟐 =sin 2 𝑥− 𝜋 2 Transformations in order are i) shift + 𝜋 2 in the x direction ii) Stretch × 1 2 in the y direction

WB12c double transformations (ax+b) y=tan 1 2 𝑥+ 𝜋 2 Sketch the graph of c) tan 𝑥 2 + 𝜋 4 y=tan 𝑥+ 𝜋 2 y = tanθ 1 -1 -2π -3π 2 -π -π 2 2π 3π 2 π π 2 =tan 1 2 𝑥+ 𝜋 2 Transformations in order are i) shift − 𝜋 2 in the x direction ii) Stretch ×2 in the x direction

For any angle ϴ, sin(- ϴ) = - sinϴ cos(- ϴ) = cosϴ tan(- ϴ) = - tanϴ Reminder Symmetry of trig graphs 1 -1 𝜋 2 𝜋 3𝜋 2 2𝜋 y - 𝜋 2 - 𝜋 −2𝜋 - 3𝜋 2 y = sinθ y = cosθ y = tanθ For any angle ϴ, sin(- ϴ) = - sinϴ cos(- ϴ) = cosϴ tan(- ϴ) = - tanϴ Complete: sin − 𝝅 𝟐 = cos − 𝝅 𝟔 = tan − 𝝅 𝟑 =

Trig equations Solve trig equations in radians the same way as in degrees Rearrange to sin / cos / tan = Use arcsin / arccos / arctan on calculator to get a first answer in a list Use a graph to list all the answers in the given range Sometimes complete the solution with more inverses ( e.g. when its cos 3𝑥+ 𝜋 2 you do the operations − 𝜋 2 and ÷3 to your list

𝑥=− 𝜋 6 , 𝜋 6 , …. . What do you notice? WB13 Solve sin 𝑥+ 𝜋 2 = 3 2 in the range 0≤𝑥≤2𝜋 y = sinθ 1 𝜋 2 𝜋 3𝜋 2 2𝜋 y -1 𝑥+ 𝜋 2 = arcsin 3 2 = 𝜋 3 , 2𝜋 3 , …. 𝜋 3 2𝜋 3 7𝜋 3 𝑥= 𝜋 3 − 𝜋 2 , 2𝜋 3 − 𝜋 2 , …. 𝑥=− 𝜋 6 , 𝜋 6 , …. . What do you notice? The other answer in range is 7𝜋 3 − 𝜋 2 = 11𝜋 6 The final answers are 𝑥= 𝜋 6 , 11𝜋 6 check they work with your calculator

WB14 Solve each equation for x in the interval 0≤𝑥≤2𝜋 giving your answers in terms of π 𝑎) 𝑥 2 = 𝜋 4 , 3𝜋 4 , …. . 𝑥= 𝜋 2 , 3𝜋 2 , 𝑏) cos 𝑥+𝜋 = 2 2 𝑏) 𝑥+π= 𝜋 4 , 7𝜋 4 , 9𝜋 4 …. . 𝑥= 3𝜋 4 , 5𝜋 4 , 𝑐) tan 𝑥 2 − 𝜋 4 = 3 c) 𝑥 2 − π 4 = 𝜋 3 , 4𝜋 3 , …. . 𝑥= 7𝜋 6 , only

WB15 Solve each equation for x in the interval 0≤𝑥≤2𝜋 giving your answers to 2 decimal places 𝑎) sin 2𝑥=0.6 𝑎) 2𝑥= 0.644, 2.498, 6.927, 8.781 …. . 𝑥=0.32, 1.25, 3.46, 4.39 𝑏) cos 𝑥−0.3 =0.8 𝑥−0.3=−0.644, 0.644, 5.640, 6.927 …. . 𝑥=, 0.94, 5.94 𝑏) 2 cos 𝑥−0.3 =1.6 𝑐) 3−2 tan 𝑥− 𝜋 3 =0 c) tan 𝑥− 𝜋 3 = 3 2 𝑥− 𝜋 3 =0.9828, 4.1244 , …. . 𝑥= 2.03, 5.17

sin 𝑥 =+ 2 2 gives 𝑥= 𝜋 4 , 3𝜋 4 𝑠𝑖𝑛 2 𝑥= 1 2 sin 𝑥 =± 2 2 WB16 Solve each equation for θ in the interval −𝜋≤𝜃≤𝜋 giving your answers in terms of π 𝑎) 2 𝑠𝑖𝑛 2 𝑥 =1 sin 𝑥 =+ 2 2 gives 𝑥= 𝜋 4 , 3𝜋 4 𝑠𝑖𝑛 2 𝑥= 1 2 sin 𝑥 =± 2 2 sin 𝑥 =− 2 2 gives 𝑥=− 𝜋 4 ,− 3𝜋 4 𝑏) 4 𝑐𝑜𝑠 2 𝑥+4 cos 𝑥 +1=0 cos 𝑥 =−1 gives 𝑥=−𝜋, 𝜋 cos 𝑥 +1 2 cos 𝑥 −1 =0 cos 𝑥 = −1 , 1 2 sin 𝑥 = 1 2 gives 𝑥=− 𝜋 3 , 𝜋 3

cos 𝑥 = −(−1)± (−1) 2 −4(3)(−1) 2(3) WB17a Solve each equation for θ in the interval −𝜋≤𝜃≤𝜋 giving your answers to 3 significant figures 𝑎) 2 cos 𝑥 −1 = sin 𝑥 tan 𝑥 cos 𝑥 =−0.4343 gives 𝑥=−2.02, 2.02 2 cos 𝑥 −1=sin x sin x cos x 2 𝑐𝑜𝑠 2 𝑥 − cos 𝑥= 𝑠𝑖𝑛 2 𝑥 sin 𝑥 =− 2 2 gives 𝑥=−0.696, 0.696 2 𝑐𝑜𝑠 2 𝑥 − cos 𝑥=1− 𝑐𝑜𝑠 2 𝑥 3 𝑐𝑜𝑠 2 𝑥 − cos 𝑥 −1=0 cos 𝑥 = −(−1)± (−1) 2 −4(3)(−1) 2(3) cos 𝑥 = −0.4343, 0.7676

𝑏) 𝑐𝑜𝑠 2 𝑥−3 sin 𝑥 − 𝑠𝑖𝑛 2 𝑥=2 sin 𝑥 =− 1 2 gives 𝑥=− 5𝜋 6 ,− 𝜋 6 WB17b Solve each equation for θ in the interval −𝜋≤𝜃≤𝜋 giving your answers to 3 significant figures 𝑏) 𝑐𝑜𝑠 2 𝑥−3 sin 𝑥 − 𝑠𝑖𝑛 2 𝑥=2 sin 𝑥 =− 1 2 gives 𝑥=− 5𝜋 6 ,− 𝜋 6 (1− 𝑠𝑖𝑛 2 𝑥)−3 sin x− 𝑠𝑖𝑛 2 𝑥=2 0 = 2 𝑠𝑖𝑛 2 𝑥+3 sin 𝑥+1 sin 𝑥 =−1 gives 𝑥=− 𝜋 2 2 sin 𝑥 +1 sin 𝑥 +1 =0 sin 𝑥 − 1 2 , -1

WB18 Sketch the curve 𝑦 = 2cos⁡𝑥° for x in the interval 0≤𝑥≤2𝜋 WB18 Sketch the curve 𝑦 = 2cos⁡𝑥° for x in the interval 0≤𝑥≤2𝜋. Sketch on the same diagram the curve 𝑦 = cos⁡(𝑥 − 𝜋 3 ) . use your graph to find the values of x in the interval 0≤𝑥≤2𝜋 for which 2 cos 𝑥 =cos⁡ 𝑥 − 𝜋 3 From the graph 2 cos 𝑥 =cos⁡ 𝑥 − 𝜋 3 When y = 1 and y=-1 𝐴 𝑖𝑠 𝑝𝑜𝑖𝑛𝑡 𝜋 3 , 1 B 𝑖𝑠 𝑝𝑜𝑖𝑛𝑡 4𝜋 3 , −1

One thing to improve is – KUS objectives BAT know the key features of trig graphs using radians BAT solve trig equations using radians self-assess One thing learned is – One thing to improve is –

END