Understanding HTLV-I Protease

Slides:



Advertisements
Similar presentations
Probing Structural Determinants Distal to the Site of Hydrolysis that Control Substrate Specificity of the 20S Proteasome  Michael Groll, Tamim Nazif,
Advertisements

Volume 8, Issue 3, Pages (September 2001)
Identification of Structural Mechanisms of HIV-1 Protease Specificity Using Computational Peptide Docking: Implications for Drug Resistance  Sidhartha.
Volume 17, Issue 1, Pages (January 2005)
Structural Basis for Vertebrate Filamin Dimerization
Volume 124, Issue 1, Pages (January 2006)
Identification of Phe187 as a Crucial Dimerization Determinant Facilitates Crystallization of a Monomeric Retroviral Integrase Core Domain  Meytal Galilee,
Transcription: Identification of a prime suspect
Can I color yellow?. Can I color yellow?
Structure Prediction: How good are we?
Volume 3, Issue 9, Pages (September 1995)
Debanu Das, Millie M Georgiadis  Structure 
Volume 108, Issue 6, Pages (March 2002)
Volume 17, Issue 5, Pages (May 2009)
Structure of the Angiopoietin-2 Receptor Binding Domain and Identification of Surfaces Involved in Tie2 Recognition  William A. Barton, Dorothea Tzvetkova,
What Color is it?.
Volume 6, Issue 11, Pages (November 1998)
Volume 12, Issue 1, Pages (March 2004)
Figure 2 The p.Lys33Gln mutation eliminates a conserved salt bridge interaction of the matrix network The p.Lys33Gln mutation eliminates a conserved salt.
Volume 24, Issue 1, Pages (October 2006)
Volume 11, Issue 8, Pages (August 2003)
Charlotte Hodson, Andrew Purkiss, Jennifer Anne Miles, Helen Walden 
Volume 10, Issue 3, Pages (March 2003)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Volume 19, Issue 7, Pages (July 2011)
Volume 133, Issue 1, Pages (April 2008)
Structure prediction: The state of the art
The Monomeric dUTPase from Epstein-Barr Virus Mimics Trimeric dUTPases
Volume 124, Issue 5, Pages (March 2006)
Hongwei Wu, Mark W. Maciejewski, Sachiko Takebe, Stephen M. King 
Core Structure of gp41 from the HIV Envelope Glycoprotein
The Crystal Structure of the Costimulatory OX40-OX40L Complex
Error-Prone DNA Polymerases
Sequence alignment of PHCCEx domains with secondary structure elements of the Tiam2 PHCCEx domain at the top. Sequence alignment of PHCCEx domains with.
Structure of the Tie2 RTK Domain
Volume 21, Issue 6, Pages (June 2013)
Volume 15, Issue 2, Pages (February 2007)
Volume 17, Issue 1, Pages (January 2005)
Structural Basis of EZH2 Recognition by EED
SUMO Takes Control of a Ubiquitin-Specific Protease
Volume 20, Issue 11, Pages (November 2013)
Volume 12, Issue 7, Pages (July 2004)
Pek Ieong, Rommie E. Amaro, Wilfred W. Li  Biophysical Journal 
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Structure of an mRNA Capping Enzyme Bound to the Phosphorylated Carboxy-Terminal Domain of RNA Polymerase II  Carme Fabrega, Vincent Shen, Stewart Shuman,
Volume 2, Issue 6, Pages R93-R104 (December 1997)
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Subdomain Interactions Foster the Design of Two Protein Pairs with ∼80% Sequence Identity but Different Folds  Lauren L. Porter, Yanan He, Yihong Chen,
Huiying Li, Michael R. Sawaya, F. Robert Tabita, David Eisenberg 
Volume 12, Issue 1, Pages (July 2015)
Volume 8, Issue 6, Pages (June 2000)
Crystal Structure of the N-Terminal Domain of Sialoadhesin in Complex with 3′ Sialyllactose at 1.85 Å Resolution  A.P. May, R.C. Robinson, M. Vinson,
Volume 127, Issue 2, Pages (October 2006)
Volume 10, Issue 3, Pages (March 2003)
Gregory J. Miller, James H. Hurley  Molecular Cell 
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Volume 16, Issue 11, Pages (November 2008)
Virus Budding and the ESCRT Pathway
HtrA—A Renaissance Protein
Volume 17, Issue 5, Pages (May 2009)
Jia-Wei Wu, Amy E. Cocina, Jijie Chai, Bruce A. Hay, Yigong Shi 
Structure of CD94 Reveals a Novel C-Type Lectin Fold
Tim Geppert, Benjamin Hoy, Silja Wessler, Gisbert Schneider 
Guilty as charged Cancer Cell
Three protein kinase structures define a common motif
Brett K. Kaiser, Matthew C. Clifton, Betty W. Shen, Barry L. Stoddard 
Volume 11, Issue 8, Pages (August 2003)
Crystal Structure of Escherichia coli RNase D, an Exoribonuclease Involved in Structured RNA Processing  Yuhong Zuo, Yong Wang, Arun Malhotra  Structure 
Correspondence Current Biology
Debanu Das, Millie M Georgiadis  Structure 
Presentation transcript:

Understanding HTLV-I Protease Suzanne Beckham Shuker, Victoria L. Mariani, Bryan E. Herger, Kelly J. Dennison  Chemistry & Biology  Volume 10, Issue 5, Pages 373-380 (May 2003) DOI: 10.1016/S1074-5521(03)00104-2

Figure 1 Structure of HIV-1 Protease One monomer is colored blue and the other is colored magenta. The catalytic aspartic acids are highlighted in green. Chemistry & Biology 2003 10, 373-380DOI: (10.1016/S1074-5521(03)00104-2)

Figure 2 Sequence Alignment of the Leukemia Retrovirus Proteases with Retroviral Proteases of Known Structure The alignment for HIV-1, HIV-2, SIV, FIV, EIAV, and RSV proteases was generated based on the reported structures (PDB IDs: HIV-1, 1A30; HIV-2, 1HSI; SIV, 1YTH; FIV, 1B11; EIAV, 1FMB; and RSV, 1BAI). These structures have the following mutations from the wild-type proteases: HIV-1: Q7K, L33I, L63I; SIV: Q7K; EAIV: I54G; RSV: S38T, I42D, I44V, M73V, A100L, V104T, R105P, G106V, and S107N. Hydrophobic residues are indicated in yellow, hydrophilic residues in green, acidic residues in red, and basic residues in blue. Abbreviations: BLV, bovine leukemia virus; MuLV, murine leukemia virus; SIV, simian immunodeficiency virus; FIV, feline immunodeficiency virus; EIAV, equine infectious anemia virus; RSV, Rous sarcoma virus. Chemistry & Biology 2003 10, 373-380DOI: (10.1016/S1074-5521(03)00104-2)

Figure 3 Homology Model of HTLV-I Protease without the Ten C-Terminal Residues The subsites are shown in spacefilling representation (S4 and S4′, top left; S3 and S3′, top right; S2 and S2′, bottom left; S1 and S1′, bottom right) with hydrophobic residues colored in green and hydrophilic residues colored by element. The catalytic aspartic acids are shown in purple and the substrate is shown in orange. PDB ID of HTLV-I protease is 1O0J. Chemistry & Biology 2003 10, 373-380DOI: (10.1016/S1074-5521(03)00104-2)