Logical Agents Reading: Russell’s Chapter 7

Slides:



Advertisements
Similar presentations
Russell and Norvig Chapter 7
Advertisements

Methods of Proof Chapter 7, second half.. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound)
Methods of Proof Chapter 7, Part II. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound) generation.
Logic.
Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof.
Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7.
Methods of Proof Chapter 7, second half.
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Knoweldge Representation & Reasoning
Logical Agents Chapter 7 Feb 26, Knowledge and Reasoning Knowledge of action outcome enables problem solving –a reflex agent can only find way from.
Logical Agents Chapter 7 (based on slides from Stuart Russell and Hwee Tou Ng)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents. Knowledge bases Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other system): 
February 20, 2006AI: Chapter 7: Logical Agents1 Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent.
Logical Agents (NUS) Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Problems in AI Problem Formulation Uninformed Search Heuristic Search Adversarial Search (Multi-agents) Knowledge RepresentationKnowledge Representation.
An Introduction to Artificial Intelligence – CE Chapter 7- Logical Agents Ramin Halavati
S P Vimal, Department of CSIS, BITS, Pilani
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 Logical Agents Chapter 7. 2 A simple knowledge-based agent The agent must be able to: –Represent states, actions, etc. –Incorporate new percepts –Update.
1 The Wumpus Game StenchBreeze Stench Gold Breeze StenchBreeze Start  Breeze.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Dr. Shazzad Hosain Department of EECS North South Universtiy Lecture 04 – Part B Propositional Logic.
1 Propositional Logic Limits The expressive power of propositional logic is limited. The assumption is that everything can be expressed by simple facts.
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 10 of 42 Wednesday, 13 September.
1 Logical Agents Chapter 7. 2 Logical Agents What are we talking about, “logical?” –Aren’t search-based chess programs logical Yes, but knowledge is used.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Logical Agents Russell & Norvig Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7 Part I. 2 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic.
Proof Methods for Propositional Logic CIS 391 – Intro to Artificial Intelligence.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents. Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models.
LOGICAL AGENTS CHAPTER 7 AIMA 3. OUTLINE  Knowledge-based agents  Wumpus world  Logic in general - models and entailment  Propositional (Boolean)
CS666 AI P. T. Chung Logic Logical Agents Chapter 7.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Propositional Logic: Logical Agents (Part I)
Notes 7: Knowledge Representation, The Propositional Calculus
EA C461 Artificial Intelligence
EA C461 – Artificial Intelligence Logical Agent
Artificial Intelligence Logical Agents
EA C461 – Artificial Intelligence Logical Agent
Notes 7: Knowledge Representation, The Propositional Calculus
Logical Agents Chapter 7.
Artificial Intelligence Logical Agents
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Logical Agents Chapter 7 Selected and slightly modified slides from
Logical Agents.
Logical Agents Chapter 7.
Artificial Intelligence
Artificial Intelligence: Agents and Propositional Logic.
Logical Agents Chapter 7.
Knowledge Representation I (Propositional Logic)
Methods of Proof Chapter 7, second half.
Propositional Logic: Methods of Proof (Part II)
Problems in AI Problem Formulation Uninformed Search Heuristic Search
LECTURE 06 Logical Agent Course : T0264 – Artificial Intelligence
Logical Agents Prof. Dr. Widodo Budiharto 2018
Presentation transcript:

Logical Agents Reading: Russell’s Chapter 7

Environments To design an agent we must specify its task environment. PEAS description of the task environment: Performance Environment Actuators Sensors

Wumpus world PEAS description Performance measure gold +1000, death -1000 -1 per step, -10 for using the arrow Environment Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square Sensors: Stench, Breeze, Glitter, Bump, Scream Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization Fully Observable No – only local perception Deterministic Yes – outcomes exactly specified Episodic No – sequential at the level of actions Static Yes – Wumpus and Pits do not move Discrete Yes Single-agent? Yes – Wumpus is essentially a natural feature

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Logic When we have too many states, we want a convenient way of dealing with sets of states. The sentence “It’s raining” stands for all the states of the world in which it is raining. Logic provides a way of manipulating big collections of sets by manipulating short descriptions instead.

Logic Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world E.g., the language of arithmetic x+2 ≥ y is a sentence; x2+y > {} is not a sentence x+2 ≥ y is true iff the number x+2 is no less than the number y x+2 ≥ y is true in a world where x = 7, y = 1 x+2 ≥ y is false in a world where x = 0, y = 6

Entailment Entailment means that one thing follows from another: KB ╞ α Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won” E.g., x+y = 4 entails 4 = x+y Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Semantics Meaning of a sentence is truth value {t, f} Interpretation is an assignment of truth values to the propositional variables ╞i α [Sentence α is t in interpretation i ] ╞i α [Sentence α is f in interpretation i ]

Semantic Rules ╞i true for all i ╞i false for all i [the sentence false has truth value f in all interpret.] ╞i  α if and only if ╞i α ╞i α  β if and only if ╞i α and ╞i β [conjunction] ╞i α  β if and only if ╞i α or ╞i β [disjunction] ╞i P iff i(P) = t

Models Logicians typically think in terms of models We say m is a model of a sentence α if α is true in m M(α) is the set of all models of α Then KB ╞ α iff M(KB)  M(α) E.g. KB = Giants won and Reds won α = Giants won

KB entails α if and only if (KB  α) is valid Models and Entailment entails Sentences Sentences An interpretation i is a model of a sentence α iff ╞i α A set of sentences KB entails α iff every model of KB is also a model of α Representation semantics semantics World subset Interpretations Interpretations KB = A  B α = B Deduction Theorem: KB ╞ α iff ╞ KB  α KB entails α if and only if (KB  α) is valid A  B B U A  B ╞ B

Entailment in the wumpus world Situation after detecting nothing in [1,1], moving right, breeze in [2,1] Consider possible models for KB assuming only pits 3 Boolean choices  8 possible models

Wumpus models

Wumpus models KB = wumpus-world rules + observations

Wumpus models KB = wumpus-world rules + observations α1 = "[1,2] is safe", KB ╞ α1, proved by model checking

Wumpus models KB = wumpus-world rules + observations

Wumpus models KB = wumpus-world rules + observations α2 = "[2,2] is safe", KB ╞ α2

Propositional logic: Syntax Propositional logic is the simplest logic – illustrates basic ideas The proposition symbols P1, P2 etc are sentences If S is a sentence, S is a sentence (negation) If S1 and S2 are sentences, S1  S2 is a sentence (conjunction) If S1 and S2 are sentences, S1  S2 is a sentence (disjunction) If S1 and S2 are sentences, S1  S2 is a sentence (implication) If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)

Truth tables for connectives

Wumpus world sentences Let Pi,j be true if there is a pit in [i, j]. Let Bi,j be true if there is a breeze in [i, j]. Let KB include the following 5 rules: R1:  P1,1 R2: B1,1  (P1,2  P2,1) R3: B2,1  (P1,1  P2,2  P3,1) R4: B1,1 R5: B2,1 and α1 = "[1,2] is safe"

Truth tables for inference

Inference by enumeration Depth-first enumeration of all models is sound and complete For n symbols, time complexity is O(2n), space complexity is O(n)

Logical equivalence Two sentences are logically equivalent} iff true in same models: α ≡ ß iff α╞ β and β╞ α

Validity and satisfiability A sentence is valid if it is true in all models, e.g., True, A   A, A  A, (A  (A  B))  B Validity is connected to the inference via: KB ╞ α if and only if (KB  α) is valid A sentence is satisfiable if it is true in some model e.g., A  B, C A sentence is unsatisfiable if it is true in no models e.g., A   A Satisfiability is connected to the inference via: KB ╞ α if and only if (KB   α) is unsatisfiable

Rules of Inference PQ P _____  Q PQ _____  P And Elimination ( - ) Or Elimination (- ) P Q ______  PQ P ______  P  Q And Introduction ( + ) Or Introduction (+ )

Rules of Inference P  Q P _______  Q Modus Ponens ( - ) Double Negaton (- )   P _____  P P Q  P  Q P Q  Q   P Conditional Proof ( + ) Reductio Ad Absurdum ( + )

Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules Legitimate (sound) generation of new sentences from old Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search algorithm Typically require transformation of sentences into a normal form Model checking truth table enumeration (always exponential in n) improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL) heuristic search in model space (sound but incomplete) e.g., hill-climbing like algorithms

l1  …  li-1  li+1  …  lk  m1  …  mj-1  mj+1 ...  mn Resolution Conjunctive Normal Form (CNF) conjunction of disjunctions of literals clauses E.g., (A  B)  (B  C  D) Resolution inference rule (for CNF): l1 …  lk, m1  …  mn l1  …  li-1  li+1  …  lk  m1  …  mj-1  mj+1 ...  mn where li and mj are complementary literals. E.g., P1,3  P2,2, P2,2 P1,3 Resolution is sound and complete for propositional logic

Conversion to CNF B1,1  (P1,2  P2,1) Eliminate , replacing α  β with (α  β)(β  α). (B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1) 2. Eliminate , replacing α  β with α β. (B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1) 3. Move  inwards using de Morgan's rules and double-negation: (B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1) 4. Apply distributivity law ( over ) and flatten: (B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)

Resolution algorithm Proof by contradiction, i.e., show KBα unsatisfiable

Resolution example KB = (B1,1  (P1,2 P2,1))  B1,1 α = P1,2

Propositional Resolution - An Example P P (1) (P  Q)  R P  Q  R (2) (S  T)  Q S  Q (3) T  Q (4) T T (5) Prove R: P  Q  R R P  Q P T  Q Q  T T nil

Propositional Resolution – Only Select One Pair to Resolve P  Q (1) P  Q  R (2) Prove R: P  Q  R R P  Q P  Q nil But is R entailed by the two facts we have been given?

Forward and backward chaining Horn Form (restricted) KB = conjunction of Horn clauses Horn clause = proposition symbol; or (conjunction of symbols)  symbol E.g., C  (B  A)  (C  D  B) Modus Ponens (for Horn Form): complete for Horn KBs α1, … ,αn, α1  …  αn  β β Can be used with forward chaining or backward chaining. These algorithms are very natural and run in linear time

Forward chaining Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

Forward chaining algorithm Forward chaining is sound and complete for Horn KB

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Backward chaining Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q Avoid loops: check if new subgoal is already on the goal stack Avoid repeated work: check if new subgoal has already been proved true, or has already failed

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. backward chaining FC is data-driven, automatic, unconscious processing May do lots of work that is irrelevant to the goal BC is goal-driven, appropriate for problem-solving Complexity of BC can be much less than linear in the size of KB

Efficient propositional inference Two families of efficient algorithms for propositional inference: Complete backtracking search algorithms DPLL algorithm (Davis, Putnam, Logemann, Loveland) Incomplete local search algorithms WalkSAT algorithm

The DPLL algorithm Determine if an input propositional logic sentence (in CNF) is satisfiable. Improvements over truth table enumeration: Early termination A clause is true if any literal is true. A sentence is false if any clause is false. Pure symbol heuristic Pure symbol: always appears with the same "sign" in all clauses. e.g., In the three clauses (A  B), (B  C), (C  A), A and B are pure, C is impure. Make a pure symbol literal true. Unit clause heuristic Unit clause: only one literal in the clause The only literal in a unit clause must be true.

The DPLL algorithm

The WalkSAT algorithm Incomplete, local search algorithm Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses Balance between greediness and randomness

The WalkSAT algorithm