CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces September 8th, 2010 Prof. John Kubiatowicz.

Slides:



Advertisements
Similar presentations
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
Advertisements

Threads, SMP, and Microkernels Chapter 4. Process Resource ownership - process is allocated a virtual address space to hold the process image Scheduling/execution-
Thursday, June 08, 2006 The number of UNIX installations has grown to 10, with more expected. The UNIX Programmer's Manual, 2nd Edition, June, 1972.
Threads 1 CS502 Spring 2006 Threads CS-502 Spring 2006.
Based on Silberschatz, Galvin and Gagne  2009 Threads Definition and motivation Multithreading Models Threading Issues Examples.
CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces September 7, 2005 Prof. John Kubiatowicz.
1/28/2004CSCI 315 Operating Systems Design1 Operating System Structures & Processes Notice: The slides for this lecture have been largely based on those.
CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces September 8, 2008 Prof. John Kubiatowicz.
Process Concept An operating system executes a variety of programs
COSC 3407: Operating Systems Lecture 3: Processes.
CS 162 Discussion Section Week 1 (9/9 – 9/13) 1. Who am I? Kevin Klues Office Hours:
Chapter 4: Threads. From Processes to Threads 4.3 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th edition, Jan 23, 2005 Threads.
Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8 th Edition Chapter 4: Threads.
Process Management. Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication.
Lecture 3 Process Concepts. What is a Process? A process is the dynamic execution context of an executing program. Several processes may run concurrently,
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 13 Threads Read Ch 5.1.
11/13/20151 Processes ICS 240: Operating Systems –William Albritton Information and Computer Sciences Department at Leeward Community College –Original.
CS 162 Discussion Section Week 2. Who am I? Haoyuan (HY) Li Office Hours: 1pm-3pm
CS162 Operating Systems and Systems Programming Lecture 2 Concurrency: Processes, Threads, and Address Spaces September 9, 2013 Anthony D. Joseph and John.
Chapter 4: Multithreaded Programming. 4.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts What is Thread “Thread is a part of a program.
Goals for Today How do we provide multiprogramming? What are Processes? How are they related to Threads and Address Spaces? Note: Some slides and/or pictures.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 4: Threads.
CS162 Operating Systems and Systems Programming Lecture 2 Concurrency: Processes, Threads, and Address Spaces January 28, 2013 Anthony D. Joseph
Threads, SMP, and Microkernels Chapter 4. Processes and Threads Operating systems use processes for two purposes - Resource allocation and resource ownership.
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
CSCI/CMPE 4334 Operating Systems Review: Exam 1 1.
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8 th Edition Chapter 4: Threads.
1 Module 3: Processes Reading: Chapter Next Module: –Inter-process Communication –Process Scheduling –Reading: Chapter 4.5, 6.1 – 6.3.
CS 162 Discussion Section Week 2. Who am I? Prashanth Mohan Office Hours: 11-12pm Tu W at.
Introduction to Operating Systems Concepts
Computer System Structures
Chapter 4: Threads Modified by Dr. Neerja Mhaskar for CS 3SH3.
Introduction to threads
August 29, 2012 Ion Stoica CS162 Operating Systems and Systems Programming Lecture 2 Concurrency: Processes, Threads,
Processes and threads.
CSCI 511 Operating Systems Chapter 3,4 (Part A) Processes and Threads
Process Management Process Concept Why only the global variables?
Chapter 3: Process Concept
CS 6560: Operating Systems Design
Operating Systems (CS 340 D)
Chapter 2 Processes and Threads Today 2.1 Processes 2.2 Threads
Process Management Presented By Aditya Gupta Assistant Professor
Processes Overview: Process Concept Process Scheduling
Chapter 3: Process Concept
Intro to Processes CSSE 332 Operating Systems
Threads & multithreading
Chapter 4: Threads.
Operating System Concepts
Operating Systems and Systems Programming
Operating Systems Processes and Threads.
CSCI 511 Operating Systems Chapter 3,4 (Part A) Processes and Threads
CS162 Operating Systems and Systems Programming Lecture 2 Concurrency: Processes, Threads, and Address Spaces January 28, 2008 Prof. Anthony D. Joseph.
Chapter 4: Threads.
January 24th, 2011 Ion Stoica CS162 Operating Systems and Systems Programming Lecture 2 Concurrency: Processes, Threads,
Threads, SMP, and Microkernels
ICS 143 Principles of Operating Systems
Recap OS manages and arbitrates resources
Anthony D. Joseph and Ion Stoica
CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces September 5, 2007 Prof. John Kubiatowicz.
Lecture Topics: 11/1 General Operating System Concepts Processes
CHAPTER 4:THreads Bashair Al-harthi OPERATING SYSTEM
Anthony D. Joseph and Ion Stoica
Chapter 3: Processes.
Chapter 4: Threads.
CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces January 25, 2006 Prof. Anthony D. Joseph.
Operating Systems: A Modern Perspective, Chapter 6
CS510 Operating System Foundations
System calls….. C-program->POSIX call
CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces September 7, 2005 Prof. John Kubiatowicz.
Presentation transcript:

CS162 Operating Systems and Systems Programming Lecture 3 Concurrency: Processes, Threads, and Address Spaces September 8th, 2010 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162

Several Distinct Phases: Review: History of OS Why Study? To understand how user needs and hardware constraints influenced (and will influence) operating systems Several Distinct Phases: Hardware Expensive, Humans Cheap Eniac, … Multics Hardware Cheaper, Humans Expensive PCs, Workstations, Rise of GUIs Hardware Really Cheap, Humans Really Expensive Ubiquitous devices, Widespread networking Rapid Change in Hardware Leads to changing OS Batch  Multiprogramming  Timeshare  Graphical UI  Ubiquitous Devices  Cyberspace/Metaverse/?? Gradual Migration of Features into Smaller Machines Situation today is much like the late 60s Small OS: 100K lines/Large: 10M lines (5M browser!) 100-1000 people-years

Review: Migration of OS Concepts and Features

Finish discussion of OS structure How do we provide multiprogramming? Goals for Today Finish discussion of OS structure How do we provide multiprogramming? What are Processes? How are they related to Threads and Address Spaces? Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides generated from my lecture notes by Kubiatowicz. Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Review: UNIX System Structure User Mode Kernel Mode Hardware Applications Standard Libs

Microkernel Structure Figure ©Wikipedia Monolithic Kernel Microkernel Moves as much from the kernel into “user” space Small core OS running at kernel level OS Services built from many independent user-level processes Communication between modules with message passing Benefits: Easier to extend a microkernel Easier to port OS to new architectures More reliable (less code is running in kernel mode) Fault Isolation (parts of kernel protected from other parts) More secure Detriments: Performance overhead severe for naïve implementation

Partition Based Structure for Multicore chips? Device Drivers Video & Window Firewall Virus Intrusion Monitor And Adapt Persistent Storage & File System HCI/ Voice Rec Large Compute-Bound Application Real-Time Identity Normal Components split into pieces Device drivers (Security/Reliability) Network Services (Performance) TCP/IP stack Firewall Virus Checking Intrusion Detection Persistent Storage (Performance, Security, Reliability) Monitoring services Performance counters Introspection Identity/Environment services (Security) Biometric, GPS, Possession Tracking Applications Given Larger Partitions Freedom to use resources arbitrarily

Uniprogramming: one thread at a time Concurrency “Thread” of execution Independent Fetch/Decode/Execute loop Operating in some Address space Uniprogramming: one thread at a time MS/DOS, early Macintosh, Batch processing Easier for operating system builder Get rid concurrency by defining it away Does this make sense for personal computers? Multiprogramming: more than one thread at a time Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X Often called “multitasking”, but multitasking has other meanings (talk about this later) ManyCore  Multiprogramming, right?

The Basic Problem of Concurrency The basic problem of concurrency involves resources: Hardware: single CPU, single DRAM, single I/O devices Multiprogramming API: users think they have exclusive access to shared resources OS Has to coordinate all activity Multiple users, I/O interrupts, … How can it keep all these things straight? Basic Idea: Use Virtual Machine abstraction Decompose hard problem into simpler ones Abstract the notion of an executing program Then, worry about multiplexing these abstract machines Dijkstra did this for the “THE system” Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Recall (61C): What happens during execution? Fetch Exec R0 … R31 F0 F30 PC Addr 232-1 … Data1 Data0 Inst237 Inst236 Inst5 Inst4 Inst3 Inst2 Inst1 Inst0 Execution sequence: Fetch Instruction at PC Decode Execute (possibly using registers) Write results to registers/mem PC = Next Instruction(PC) Repeat PC PC PC PC Addr 0

How can we give the illusion of multiple processors? CPU3 CPU2 CPU1 Shared Memory CPU1 CPU2 CPU3 Time Assume a single processor. How do we provide the illusion of multiple processors? Multiplex in time! Each virtual “CPU” needs a structure to hold: Program Counter (PC), Stack Pointer (SP) Registers (Integer, Floating point, others…?) How switch from one CPU to the next? Save PC, SP, and registers in current state block Load PC, SP, and registers from new state block What triggers switch? Timer, voluntary yield, I/O, other things

Properties of this simple multiprogramming technique All virtual CPUs share same non-CPU resources I/O devices the same Memory the same Consequence of sharing: Each thread can access the data of every other thread (good for sharing, bad for protection) Threads can share instructions (good for sharing, bad for protection) Can threads overwrite OS functions? This (unprotected) model common in: Embedded applications Windows 3.1/Machintosh (switch only with yield) Windows 95—ME? (switch with both yield and timer)

Modern Technique: SMT/Hyperthreading Hardware technique Exploit natural properties of superscalar processors to provide illusion of multiple processors Higher utilization of processor resources Can schedule each thread as if were separate CPU However, not linear speedup! If have multiprocessor, should schedule each processor first Original technique called “Simultaneous Multithreading” See http://www.cs.washington.edu/research/smt/ Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

Administrivia Waitlist: Cleared of all non-majors and grad students 2 students added to class this morning Waitlist has 7 EECS juniors on it in case missing students have dropped Section signup successful! Our sections seem to be pretty balanced Missing 6-8 students. Look at the Group/Section Assignments link to see what section you have and if your are missing! If you are not in group, will assume you are dropping class Have one three-person group in Section 3 Should be no three-person groups! Does someone need a group and can make Section 3? Reader: ready in a couple of days Probably by Friday: I’ll put an announcement on Website Tuesday: Start Project 1 Go to Nachos page and start reading up Note that all the Nachos code will be printed in your reader (Available soon…)

How to protect threads from one another? Need three important things: Protection of memory Every task does not have access to all memory Protection of I/O devices Every task does not have access to every device Protection of Access to Processor: Preemptive switching from task to task Use of timer Must not be possible to disable timer from usercode

Recall: Program’s Address Space Address space  the set of accessible addresses + state associated with them: For a 32-bit processor there are 232 = 4 billion addresses What happens when you read or write to an address? Perhaps Nothing Perhaps acts like regular memory Perhaps ignores writes Perhaps causes I/O operation (Memory-mapped I/O) Perhaps causes exception (fault) Program Address Space

Physical Address Space Providing Illusion of Separate Address Space: Load new Translation Map on Switch Data 2 Stack 1 Heap 1 OS heap & Stacks Code 1 Stack 2 Data 1 Heap 2 Code 2 OS code OS data Code Data Heap Stack Code Data Heap Stack Prog 1 Virtual Address Space 1 Prog 2 Virtual Address Space 2 Translation Map 1 Translation Map 2 Physical Address Space

Traditional UNIX Process Process: Operating system abstraction to represent what is needed to run a single program Often called a “HeavyWeight Process” Formally: a single, sequential stream of execution in its own address space Two parts: Sequential Program Execution Stream Code executed as a single, sequential stream of execution Includes State of CPU registers Protected Resources: Main Memory State (contents of Address Space) I/O state (i.e. file descriptors) Important: There is no concurrency in a heavyweight process

How do we multiplex processes? The current state of process held in a process control block (PCB): This is a “snapshot” of the execution and protection environment Only one PCB active at a time Give out CPU time to different processes (Scheduling): Only one process “running” at a time Give more time to important processes Give pieces of resources to different processes (Protection): Controlled access to non-CPU resources Sample mechanisms: Memory Mapping: Give each process their own address space Kernel/User duality: Arbitrary multiplexing of I/O through system calls Process Control Block

CPU Switch From Process to Process This is also called a “context switch” Code executed in kernel above is overhead Overhead sets minimum practical switching time Less overhead with SMT/hyperthreading, but… contention for resources instead

Diagram of Process State As a process executes, it changes state new: The process is being created ready: The process is waiting to run running: Instructions are being executed waiting: Process waiting for some event to occur terminated: The process has finished execution

PCBs move from queue to queue as they change state Process Scheduling PCBs move from queue to queue as they change state Decisions about which order to remove from queues are Scheduling decisions Many algorithms possible (few weeks from now)

What does it take to create a process? Must construct new PCB Inexpensive Must set up new page tables for address space More expensive Copy data from parent process? (Unix fork() ) Semantics of Unix fork() are that the child process gets a complete copy of the parent memory and I/O state Originally very expensive Much less expensive with “copy on write” Copy I/O state (file handles, etc) Medium expense

More to a process than just a program: Process =? Program main () { …; } A() { … main () { …; } A() { … Heap Stack A main Program Process More to a process than just a program: Program is just part of the process state I run emacs on lectures.txt, you run it on homework.java – Same program, different processes Less to a process than a program: A program can invoke more than one process cc starts up cpp, cc1, cc2, as, and ld

Multiple Processes Collaborate on a Task High Creation/memory Overhead (Relatively) High Context-Switch Overhead Need Communication mechanism: Separate Address Spaces Isolates Processes Shared-Memory Mapping Accomplished by mapping addresses to common DRAM Read and Write through memory Message Passing send() and receive() messages Works across network Collaboration allows faults to propagate…

Shared Memory Communication Data 2 Code Data Heap Stack Shared Code Data Heap Stack Shared Stack 1 Heap 1 Code 1 Stack 2 Data 1 Prog 2 Virtual Address Space 2 Prog 1 Virtual Address Space 1 Heap 2 Code 2 Shared Communication occurs by “simply” reading/writing to shared address page Really low overhead communication Introduces complex synchronization problems

Inter-process Communication (IPC) Mechanism for processes to communicate and to synchronize their actions Message system – processes communicate with each other without resorting to shared variables IPC facility provides two operations: send(message) – message size fixed or variable receive(message) If P and Q wish to communicate, they need to: establish a communication link between them exchange messages via send/receive Implementation of communication link physical (e.g., shared memory, hardware bus, systcall/trap) logical (e.g., logical properties)

Modern “Lightweight” Process with Threads Thread: a sequential execution stream within process (Sometimes called a “Lightweight process”) Process still contains a single Address Space No protection between threads Multithreading: a single program made up of a number of different concurrent activities Sometimes called multitasking, as in Ada… Why separate the concept of a thread from that of a process? Discuss the “thread” part of a process (concurrency) Separate from the “address space” (Protection) Heavyweight Process  Process with one thread

Single and Multithreaded Processes Sometimes need parallelism for a single job, and processes are very expensive – to start, switch between, and to communicate between Threads encapsulate concurrency: “Active” component Address spaces encapsulate protection: “Passive” part Keeps buggy program from trashing the system Why have multiple threads per address space?

Examples of multithreaded programs Embedded systems Elevators, Planes, Medical systems, Wristwatches Single Program, concurrent operations Most modern OS kernels Internally concurrent because have to deal with concurrent requests by multiple users But no protection needed within kernel Database Servers Access to shared data by many concurrent users Also background utility processing must be done

Examples of multithreaded programs (con’t) Network Servers Concurrent requests from network Again, single program, multiple concurrent operations File server, Web server, and airline reservation systems Parallel Programming (More than one physical CPU) Split program into multiple threads for parallelism This is called Multiprocessing Some multiprocessors are actually uniprogrammed: Multiple threads in one address space but one program at a time

State shared by all threads in process/addr space Thread State State shared by all threads in process/addr space Contents of memory (global variables, heap) I/O state (file system, network connections, etc) State “private” to each thread Kept in TCB  Thread Control Block CPU registers (including, program counter) Execution stack – what is this? Execution Stack Parameters, Temporary variables return PCs are kept while called procedures are executing

Execution Stack Example A(int tmp) { if (tmp<2) B(); printf(tmp); } B() { C(); C() { A(2); A(1); A: tmp=1 ret=exit B: ret=A+2 C: ret=b+1 A: tmp=2 ret=C+1 Stack Pointer Stack Growth Stack holds temporary results Permits recursive execution Crucial to modern languages

Real operating systems have either Classification Many One # of addr spaces: Many One # threads Per AS: MS/DOS, early Macintosh Traditional UNIX Embedded systems (Geoworks, VxWorks, JavaOS,etc) JavaOS, Pilot(PC) Mach, OS/2, Linux Windows 9x??? Win NT to XP, Solaris, HP-UX, OS X Real operating systems have either One or many address spaces One or many threads per address space Did Windows 95/98/ME have real memory protection? No: Users could overwrite process tables/System DLLs

Example: Implementation Java OS Many threads, one Address Space Why another OS? Recommended Minimum memory sizes: UNIX + X Windows: 32MB Windows 98: 16-32MB Windows NT: 32-64MB Windows 2000/XP: 64-128MB What if we want a cheap network point-of-sale computer? Say need 1000 terminals Want < 8MB What language to write this OS in? C/C++/ASM? Not terribly high-level. Hard to debug. Java/Lisp? Not quite sufficient – need direct access to HW/memory management Java APPS OS Hardware Java OS Structure

Processes have two parts Summary Processes have two parts Threads (Concurrency) Address Spaces (Protection) Concurrency accomplished by multiplexing CPU Time: Unloading current thread (PC, registers) Loading new thread (PC, registers) Such context switching may be voluntary (yield(), I/O operations) or involuntary (timer, other interrupts) Protection accomplished restricting access: Memory mapping isolates processes from each other Dual-mode for isolating I/O, other resources Book talks about processes When this concerns concurrency, really talking about thread portion of a process When this concerns protection, talking about address space portion of a process