Electrochemistry G = wmax w = - Pext V w = - n F  Mechanical work

Slides:



Advertisements
Similar presentations
Electrochemistry.
Advertisements

Galvanic Cells What will happen if a piece of Zn metal is immersed in a CuSO 4 solution? A spontaneous redox reaction occurs: Zn (s) + Cu 2 + (aq) Zn 2.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Lecture 253/27/06 Bottle and Can drive today 11-3 Hagan Info Booth Seminar today at 4 pm.
ELECTROCHEMISTRY Chap 20.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Electrochemistry Chapter and 4.8 Chapter and 19.8.
Electrochemistry. 17.1/17.2 GALVANIC CELLS AND STANDARD REDUCTION POTENTIALS Day 1.
Electrochemistry Chapter 19.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry. Table of Reduction Potentials Measured against the Standard Hydrogen Electrode.
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Mechanical work  G = Electrical work w = n = w = w max # moles e - F =charge on 1 mol e -  = electrical potential - P ext VV - nF.
Electrochemistry  G = Electrical work w = n = w max # moles e - F =charge on 1 mol e -  = electrical potential - nF  w max =  H - T  S.
Electrochemistry The study of the interchange of chemical and electrical energy. Sample electrochemical processes: 1) Corrosion 4 Fe (s) + 3 O 2(g) ⇌
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox reactions half-reactions: Reduction 2Fe e -  2Fe 2+ oxidation Sn 2+  Sn e - 2Fe 3+ + Sn 2+  2Fe 2+ + Sn http:\asadipour.kmu.ac.ir.
Cell EMF Eocell = Eored(cathode) - Eored(anode)
1 ELECTROCHEMISTRY C H A P T E R ELECTROCHEMISTRY: RELATIONSHIP OF ELECTRICAL CHARGE OR ELECTRICITY TO CHEMICAL REACTIONS REDUCTION + OXIDATIONOX.
Chapter 20: Electrochemistry Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
CHAPTER 17 ELECTROCHEMISTRY. Oxidation and Reduction (Redox) Electrons are transferred Spontaneous redox rxns can transfer energy Electrons (electricity)
Electrochemistry Chapter 20. oxidation: lose e- -increase oxidation number reduction: gain e- -reduces oxidation number LEO goes GER Oxidation-Reduction.
A redox reaction is one in which the reactants’ oxidation numbers change. What are the oxidation numbers of the metals in the reaction below? The.
Electrochemistry. To obtain a useful current, we separate the oxidation and reduction half-reactions so that electron transfer occurs thru an external.
a.k.a. Oxidation-Reduction
Electrochemistry.
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
ELECTROCHEMICAL CELLS Chapter 20 : D8 C20
Electrochemistry.
You will have to completely label a diagram to look like this
Electrochemistry Chapter 19.
Electrochemistry Chapter 19
Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g) 
“minimal” galvanic cells
Redox Reactions and Electrochemistry
Electrochemistry the study of the interchange of chemical and electrical energy.
Electrochemistry Chapter 19
Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells
Electrochemistry MAE-212
Chp 17 Electrochemistry.
“minimal” galvanic cells
Chapter Thermodynamics and Electrochemistry
Chapter 17: Electrochemistry
Electrochemistry.
Electrochemistry G = wmax w = - Pext V w = - n F  Mechanical work
Electrochemistry.
Chapter 20 Electrochemistry
Electrolytic Cells galvanic cell electrolytic cell 2 H2(g) + O2(g) 
Electrochemistry The study of the interchange
Electrochemistry Chapter 19
Introduction to Electrochemistry
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
January 2018 Electrochemistry Chemistry 30.
Electrochemistry.
Electrochemistry.
Ch. 17 Electrochemistry.
Electrochemistry.
Electrochemistry Chapter 19
Electrochemistry Chapter 20.
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
Galvanic Cells Assignment # 17.1.
Electrochemistry Chapter 19
Presentation transcript:

Electrochemistry G = wmax w = - Pext V w = - n F  Mechanical work Electrical work n = # moles e- F = charge on 1 mol e-  = electrical potential

Electrochemistry electrons reduction oxidation L E O ose lectrons G E R ain lectrons eduction Ger

Electrochemistry silver Ag(s) Ag+(aq) aluminum Al(s) Al3+(aq) Ag(s)  77 kJ mol-1 of Al(s)  Al3+(aq) + 3e- Gof = -481 kJ mol-1 these are reactions a) oxidation b) reduction

Ag(s)  Ag+(aq) + e- Gof = 77 kJ mol-1 Al(s)  Al3+(aq) + 3e- Gof = -481 kJ mol-1 Al(s)  Al3+(aq) + 3e- Gof = -481 kJ mol-1 3( ) Ag+(aq) + e-  Ag(s) Go = -77 kJ mol-1 3( ) __________________ ________________ 3Ag+ + Al  3Ag + Al3+ Go = -712 kJ/mol spontaneous

anode cathode 1 mol Al3+ + 1 molecule Al3+ 3 mol NO3- Al  Al3+ + 3e- Ag+ + e-  Ag a) oxidation b) reduction reduction 3e-  Cl- K+ Al Ag anode cathode 1M Al(NO3)3 1M AgNO3 1 mol Al3+ + 1 molecule Al3+ 3 mol NO3- 3Ag++ Al  Al3+ + 3Ag

anode cathode Al(s)  Al3+(1 M) Ag+(1 M) Ag(s)   Al Ag 1M Al(NO3)3  Cl- K+ Al Ag anode cathode 1M Al(NO3)3 1M AgNO3 Ag+ +e-  Ag Al  Al3+ + 3e- reduction oxidation Al(s)  Al3+(1 M) Ag+(1 M) Ag(s)  

Reduction Potential Al(s) Al3+(aq) (1M) Ag+(aq) (1M) Ag(s) Al(s)  Al3+ + 3e- Ag+ + e-  Ag 3Ag+ + Al  3Ag + Al3+ Go = -712 kJ/mol wmax = -n F o Go = wmax standard reduction potential o = standard = 1M, 1 atm reduction potential = tendency to gain e-

half-reaction o (V) F2 + 2e-  2F- 2.87 Ag+ + e-  Ag 0.80 spontaneous reduction Ag+ + e-  Ag 0.80 Cu2+ + 2e-  Cu 0.34 Standard Hydrogen electrode 2H+ + 2e-  H2 0.00 o = 0 (SHE) Sn2+ + 2e-  Sn -0.13 Al3+ + 3e-  Al -1.66 spontaneous oxidation Li+ + e-  Li -3.05 a) oxidizing b) reducing F2 is spontaneously reduced F2 is an agent Li is spontaneously oxidized Li is a agent reducing

o is intensive _____________ ____ half-reaction o (V) F2 + 2e-  2F- 2.87 Ag+ + e-  Ag 0.80 Cu2+ + 2e-  Cu 0.34 2H+ + 2e-  H2 0.00 Sn2+ + 2e- Sn -0.13 Al3+ + 3e-  Al -1.66 Li+ + e-  Li -3.05 o is intensive a) b) Al half-cell and Ag half-cell o (V) reduction reaction: 3( ) Ag+ + e-  Ag 0.80 oxidation reaction: _____________ ____ Al  Al3+ + 3e- 1.66  ocell = 3Ag+ +Al 3Ag +Al3+ 2.46 V

ocell ocell = ored - oox Ag+ (aq) + e-  Ag(s) o = 0.80 V Al3+ (aq) + 3e- Al(s) o = -1.66 V ocell = 0.80 - (-1.66) = 2.46 V spontaneous ocell > 0 voltaic or galvanic cell ocell < 0 electrolytic cell non-spontaneous

Electrochemical work Go = wmax = - n F o 3Ag+ + Al  3Ag + Al3+ ocell = 2.46 V Go = wmax = - n F o n = mol of e- F = faraday = 96,500 C / mol e- o = standard reduction potential V (J/C) Go = -(3 mol e-) (96,500 C/mol e-) (2.46V) = -712170 CV = -712170 J = -712 kJ

Balancing redox reactions Cr2O72- (aq)  Cr3+ (aq) e-+ 6 H++ 14 Cr2O72-  Cr3+ 2 + H2O 7 balance Cr balance O add H2O balance H add H+ balance charge add e-

Cr2O72- + 14 H+ + 6 e-  2 Cr3+ + 7 H2O oxidation or reduction oxidation state of Cr Cr2O72- 6+ Cr3+ 3+ O = 2- Cr has been reduced Cr is an agent oxidizing

oxidation or reduction Cr2O72- + 14 H+ + 6 e-  2 Cr3+ + 7 H2O oxidation or reduction GER gain e- reduction need oxidation reaction 2H+ (aq)  H2(g) balance charge with e- H2(g)  2H+ (aq) + 2e- 2H+ + 2e- H2(g) 3 ( ) another reduction reaction