Computational Geometry

Slides:



Advertisements
Similar presentations
Tyler White MATH 493 Dr. Wanner
Advertisements

Motion Planning for Point Robots CS 659 Kris Hauser.
Voronoi Diagrams in n· 2 O(√lglg n ) Time Timothy M. ChanMihai Pătraşcu STOC’07.
Computational Geometry II Brian Chen Rice University Computer Science.
Computational Geometry The systematic study of algorithms and data structures for geometric objects, with a focus on exact algorithms that are asymptotically.
DEpthLAUNAY1 DEpthLAUNAY Manuel Abellanas Alfredo de las Vegas Facultad de Informática - UPM.
1st Meeting Industrial Geometry Computational Geometry ---- Some Basic Structures 1st IG-Meeting.
DESIGN OF A GENERIC PATH PATH PLANNING SYSTEM AILAB Path Planning Workgroup.
Triangulation 邓俊辉 清华大学计算机系 2015年5月24日星期日 2015年5月24日星期日 2015年5月24日星期日 2015年5月24日星期日 2015年5月24日星期日.
2. Voronoi Diagram 2.1 Definiton Given a finite set S of points in the plane , each point X of  defines a subset S X of S consisting of the points of.
CPSC 335 Geometric Data Structures in Computer Modeling and GIS Dr. Marina L. Gavrilova Assistant Professor Dept of Comp. Science, University of Calgary,
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 l-Monotone Convex polygons are easy to triangulate. Unfortunately the partition.
Delaunay Triangulation on the GPU Dan Maljovec. CPU Delaunay Triangulation Randomized Incremental Algorithm 1.Construct Bounding triangle 2.Choose point.
CS 326 A: Motion Planning Criticality-Based Planning.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2007 Chapter 5: Voronoi Diagrams Wednesday,
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Lection 1: Introduction Computational Geometry Prof.Dr.Th.Ottmann 1 History: Proof-based, algorithmic, axiomatic geometry, computational geometry today.
HIT CS&E © DB-LAB (2003) Design and Analysis of Computer Algorithms 骆吉洲计算机科学与工程系.
Computational Geometry Algorithms Library Source: CGAL web page
UNC Chapel Hill M. C. Lin Overview of Last Lecture About Final Course Project –presentation, demo, write-up More geometric data structures –Binary Space.
CS 326 A: Motion Planning robotics.stanford.edu/~latombe/cs326/2003/index.htm Configuration Space – Basic Path-Planning Methods.
CS 326A: Motion Planning Basic Motion Planning for a Point Robot.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2001 Lecture 6 Start of Part II Material Monday,
1 Advanced Scene Management System. 2 A tree-based or graph-based representation is good for 3D data management A tree-based or graph-based representation.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2001 Lecture 8 Approximate Nearest Neighbor.
UNC Chapel Hill M. C. Lin Point Location Chapter 6 of the Textbook –Review –Algorithm Analysis –Dealing with Degeneracies.
An Introduction to Computational Geometry Joseph S. B. Mitchell Stony Brook University.
ADA: 14. Intro to CG1 Objective o give a non-technical overview of Computational geometry, concentrating on its main application areas Algorithm.
Computational Geometry The systematic study of algorithms and data structures for geometric objects, with a focus on exact algorithms that are asymptotically.
Kansas State University Department of Computing and Information Sciences CIS 736: Computer Graphics Wednesday, February 23, 2000 William H. Hsu Department.
B659: Principles of Intelligent Robot Motion Kris Hauser.
AMS 345/CSE 355 Computational Geometry Lecture 1: Introduction Joe Mitchell.
Combinatorial Geometry 邓俊辉 清华大学计算机系 2015年10月12日星期一 2015年10月12日星期一 2015年10月12日星期一 2015年10月12日星期一.
Nearest Neighbor Searching Under Uncertainty
Computational Geometry Course Summary (First Half) Spring 2008 Pay special attention to: algorithm details (able to explain correctness and carry out a.
Path Planning for a Point Robot
UNC Chapel Hill M. C. Lin COMP290-72: Computational Geometry and Applications Tues/Thurs 2:00pm - 3:15pm (SN 325) Ming C. Lin
Pierre Alliez The Computational Geometry Algorithm Library.
Collaborative Visual Computing Lab Department of Computer Science University of Cape Town Graphics Topics in VR By Shaun Nirenstein.
Voronoi Diagram (Supplemental)
Open Problem: Dynamic Planar Nearest Neighbors CSCE 620 Problem 63 from the Open Problems Project
Computational Geometry Piyush Kumar (Lecture 5: Range Searching) Welcome to CIS5930.
Perito Moreno Glacier Perito Moreno Glacier 二○一五年十月二十七日星期二.
UNC Chapel Hill M. C. Lin Introduction to Motion Planning Applications Overview of the Problem Basics – Planning for Point Robot –Visibility Graphs –Roadmap.
Computational Geometry The systematic study of algorithms and data structures for geometric objects, with a focus on exact algorithms that are asymptotically.
Computational Geometry Piyush Kumar (Lecture 1: Introduction) Welcome to CIS5930.
Delaunay Triangulation on the GPU
Robotics Chapter 5 – Path and Trajectory Planning
3D Object Representations 2011, Fall. Introduction What is CG?  Imaging : Representing 2D images  Modeling : Representing 3D objects  Rendering : Constructing.
IntroductionReduction to Arrangements of Hyperplanes We keep the canonical triangulation (bottom, left corner triangulation) of each convex cell of the.
Minimum Weight Triangulation Plamen Ivanov Problem 1 from The Open Problems Project
Computational Geometry Piyush Kumar (Lecture 1: Introduction) Welcome to CIS5930.
CS552: Computer Graphics Lecture 28: Solid Modeling.
AHD: Alternate Hierarchical Decomposition Convex decomposition of nonconvex objects into their convex hull components, represented in hierarchical tree.
学堂班系列讲座 化学系 Prof. Dr. Li Deng Brandeis University
Bounding Volume Hierarchies and Spatial Partitioning
An Introduction to Computational Geometry
学术报告 欢迎各位师生参加! 报告题目: Efficient Context-aware Scene Labeling with
Bounding Volume Hierarchies and Spatial Partitioning
3D Object Representations
CDA 6938 Final Project Triangulation from Point Cloud
Query Processing in Databases Dr. M. Gavrilova
Computational Geometry
Triangulation of point set
Unstructured grid: an introduction
CS679 - Fall Copyright Univ. of Wisconsin
Overview of Modeling 김성남.
Parallel Computational Geometry
Robotics meet Computer Science
Presentation transcript:

Computational Geometry 邓俊辉 清华大学计算机系 deng@tsinghua.edu.cn http://vis.cs.tsinghua.edu.cn:10020/~deng 2018年11月14日星期三上午10时54分

Computational Geometry What CG Studies algorithms & data structures for geometric problems discrete & finite geometric objects one area of theoretical computer science Handbook of Discrete & Computational Geometry 6 categories 52 topics Junhui Deng, Tsinghua Computer

Junhui Deng, Tsinghua Computer Geometric Algorithms Geometric search point location range query/search Proximity nearest neighbor query Decomposition / mesh generation triangulation / trapezoidalization Visibility test intersection / collision detection / transversal Geometric optimization / approximation MEC / MES / … greedy triangulation Junhui Deng, Tsinghua Computer

Junhui Deng, Tsinghua Computer Data Structures Arrangement / configuration lattice / k-set / k-level / envelope / zonotope / … Convex hull polyhedron / polytope Subdivision Voronoi diagram Delaunay triangulation / MWT / greedy triangulation trapezoidal map quadtree / octree / kd-tree / range tree / segment tree / BSP tree / … Junhui Deng, Tsinghua Computer

Junhui Deng, Tsinghua Computer Methodologies Reduction Duality Geometric transformation Decomposition & hierarchization Randomization / derandomization Approximation Parallelization Junhui Deng, Tsinghua Computer