E. Métral, N. Mounet and B. Salvant

Slides:



Advertisements
Similar presentations
Using the real lattice and an improved model for the wake field, the extraction jitter can now be calculated more accurately. Assuming an injection jitter.
Advertisements

March 14-15, 2007ECloud Feedback, IUCF1 Electron-Cloud Effects in Fermilab Booster K.Y. Ng Fermilab Electron-Cloud Feedback Workshop IUCF, Indiana March.
SPS impedance work in progress SPSU meeting August 11 th 2011.
Finite wall wake function Motivation: Study of multi-bunch instability in damping rings. Wake field perturbs Trailing bunches OCS6 damping ring DCO2 damping.
Impedance of new ALICE beam pipe Benoit Salvant, Rainer Wanzenberg and Olga Zagorodnova Acknowledgments: Elias Metral, Nicolas Mounet, Mark Gallilee, Arturo.
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes C. Zannini E. Metral, G. Rumolo, B. Salvant.
TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012.
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Update on the kicker impedance model and measurements of material properties V.G. Vaccaro, C. Zannini and G. Rumolo Thanks to: M. Barnes, N. Biancacci,
Studies of impedance effects for a composite beam pipe for the experimental areas Request from M. Galilee, G. Schneider (TE/VSC)
Agenda: General kickers analysis Wang-Tsutsui method for computing impedances Benchmarks Conclusions Bibliography Acknowledgments: E.Métral, M.Migliorati,
Status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, N. Mounet, T. Rijoff, B. Salvant.
Update of the SPS transverse impedance model Benoit for the impedance team.
Updated status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, B. Mikulec, N. Mounet, T. Rijoff,
Update of the SPS transverse impedance model C. Zannini, G. Rumolo, B. Salvant Acknowledgments: H. Bartosik, O.Berrig, F. Caspers, E. Chapochnikova, G.
Update on BGV impedance studies Alexej Grudiev, Berengere Luthi, Benoit Salvant for the impedance team Many thanks to Bernd Dehning, Massimiliano Ferro-Luzzi,
TDI impedance and power loss O. Aberle, F. Caspers, A. Grudiev, E. Metral, N. Mounet, B. Salvant.
11 Update of the SPS impedance model G. Arduini, O. Berrig, F. Caspers, A. Grudiev, E. Métral, G. Rumolo, B. Salvant, E. Shaposhnikova, B. Spataro (INFN),
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
Impedance of the CLIC-DRs: What we know so far and what else we need to study…. E. Koukovini-Platia M. Barnes, A. Grudiev, N. Mounet, Y. Papaphilippou,
Outline: Motivation Comparisons with: > Thick wall formula > CST Thin inserts models Tests on the Mode Matching Method Webmeeting N.Biancacci,
Collimation for the Linear Collider, Daresbury.1 Adam Mercer, German Kurevlev, Roger Barlow Simulation of Halo Collimation in BDS.
Elias Métral, SPSU Study Group and Task Force on SPS Upgrade meeting, 25/03/2010 /311 TMCI Intensity Threshold for LHC Bunch(es) in the SPS u Executive.
Coupler Short-Range Wakefield Kicks Karl Bane and Igor Zagorodnov Wake Fest 07, 11 December 2007 Thanks to M. Dohlus; and to Z. Li, and other participants.
N. Mounet and E. Métral - HB /10/20101 News on the 2D wall impedance theory N. Mounet (EPFL/ CERN) and E. Métral (CERN) Thesis supervisor : Prof.
1 Update on the impedance of the SPS kickers E. Métral, G. Rumolo, B. Salvant, C. Zannini SPS impedance meeting - Oct. 16 th 2009 Acknowledgments: F. Caspers,
BE/ABP/LIS section meeting - N. Mounet, B. Salvant and E. Métral - CERN/BE-ABP-LIS - 07/09/20091 Fourier transforms of wall impedances N. Mounet, B. Salvant.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
Collective Effect II Giuliano Franchetti, GSI CERN Accelerator – School Prague 11/9/14G. Franchetti1.
Beam Instability in High Energy Hadron Accelerators and its Challenge for SPPC Liu Yu Dong.
Instability issues in CEPC
Finemet cavity impedance studies
Benoit Salvant, Kyrre Sjobak, Christine Vollinger, Na Wang
Updated status of the PSB impedance model
Follow up on SPS transverse impedance
New results on impedances, wake fields and electromagnetic fields in an axisymmetric beam pipe N. Mounet and E. Métral Acknowledgements: B. Salvant, B.
Proposals for 2015 impedance-related MD requests for PSB and SPS
Development of a novel measurement technique for the Amorphous Carbon EM Characterization in the Sub-THz frequency range. A.Passarelli, A. Andreone,
HOM power in FCC-ee cavities
A. Al-khateeb, O. Chorniy, R. Hasse, V. Kornilov, O. Boine-F
Benchmarking the SPS transverse impedance model: headtail growth rates
FCC-ee: coupling impedances and collective effects
Laser-engineered surface structures (LESS) What is the beam impedance?
General wall impedance theory for 2D axisymmetric and flat multilayer structures N. Mounet and E. Métral Acknowledgements: N. Biancacci, F. Caspers, A.
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Update of the impedance of new LHC experimental beam pipes
Invited talk TOAC001 ( min, 21 slides)
TCTP the CST side F. Caspers, H. Day, A. Grudiev, E. Metral, B. Salvant Acknowledgments: R. Assmann, A. Dallocchio, L. Gentini, C. Zannini Impedance Meeting.
N. Mounet, G. Rumolo and E. Métral
Beam impedance of 63mm VM with unshielded Bellows
Electromagnetic fields in a resistive cylindrical beam pipe
Electromagnetic fields in a resistive cylindrical beam pipe
Laser-engineered surface structures (LESS) What is the beam impedance?
Na Wang and Qing Qin Institute of High Energy Physics, Beijing
E. Metral, G. Rumolo, B. Salvant, C. Zannini (CERN – BE-ABP-LIS)
E. Métral, G. Rumolo, R. Tomás (CERN Switzerland), B
Beam impedance of 63mm VM with unshielded Bellows
NEWS ABOUT COLLIMATOR IMPEDANCE
STABILITY OF THE LONGITUDINAL BUNCHED-BEAM COHERENT MODES
Tune shifts in LHC from collimators impedance
Impedance in a flat and infinite chamber: a new model
Updated status of the PSB impedance model
Simulation with Particle Studio
LHC impedance: Comparison between phase 1 and IR3MBC – follow-up
Some results on the LHC multibunch modes at 7 TeV/c
Impedance analysis for collimator and beam screen in LHC and Resistive Wall Instability Liu Yu Dong.
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Power loss in the LHC beam screen at 7 TeV due to the multi-layer longitudinal impedance N. Mounet and E. Métral Goal: Check the effect of the multi-layer.
LHC collimation review follow-up Impedance with IR3MBC option & comparison with phase 1 tight settings N. Mounet, B. Salvant and E. Métral Acknowledgements:
Current impedance issues
Presentation transcript:

Modification of the vacuum chamber in ATLAS Effect on impedance and related quantities E. Métral, N. Mounet and B. Salvant with the help of R. Veness and M. A. Gallilee E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Context and motivation There is a proposition to reduce the diameter of the Beryllium vacuum chamber inside the ATLAS pixel detector: Radius should change from 29 mm to 22.5 mm, Need also to insert two new conical transitions (=tapering) from the existing 29 mm to the 22.5 mm radius, using the available 100 mm length. Transition angle = arctan(6.5/100) ≈ 3.7 deg << 15 deg (value set by L. Vos in the past). Issues to assess: Longitudinal and transverse impedance for beam stability, Longitudinal impedance for power loss. E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Current situation 7.1 m, inner diameter 58 mm NEG coating (1 μm) Beryllium (0.8 mm at -15°C) Isolating aerogel (4 mm) E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Current situation E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Future situation inner diameter 58 mm 7.1 m, inner diameter 45 mm 100 mm transition with the same layers of materials inside (NEG 1 μm – Be 0.8 mm – aerogel 4 mm) E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Impedance contributions Two different contributions are to be distinguished: Resistive wall impedance, due to the resistivity of the beam pipe. Models assume a perfectly smooth cylindrical geometry. Geometrical impedance, due to the conical transitions (tapering) in the modified situation. Models assume a perfectly conductive chamber. E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Material parameters used for the resistive wall impedance Beryllium: Resistivity: 4.24 10-8 Ω.m (from specifications) Permittivity: 1 Aerogel: Resistivity: Infinity (approximation) Permittivity: 1.1 (from specifications) NEG: Resistivity: 2.5 10-5 Ω.m (David Seebacher, F. Caspers, NEG properties in the microwave range, SPSU Meeting, 17th February, CERN) Permittivity: 10 E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Resistive wall models Two models used here: Exact multilayer analytical formula for an axisymmetric geometry (assumptions: linear materials, infinite length i.e. no side effects). Implemented in a Mathematica code (ReWall – http://impedance.web.cern.ch/impedance/Codes/ReWall/ReWall_to_date.zip) Classic thick wall formula (Chao’s book) giving a simple impedance formula for a resistive beam pipe, valid at “intermediate” frequencies: Longitudinal impedance: Transverse impedance: with L the length of the element, b its radius, s the wall conductivity, m0 the vacuum permeability, Z0= m0 c the vacuum impedance (c=speed of light), and w the angular frequency. E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Power loss due to the impedance General expression for any impedance: loss is a function of the real part of the longitudinal impedance and of the bunch spectrum l(w) (=line density in frequency domain, here for a parabolic bunch): with f0=w0 /2p the revolution frequency, M the number of bunches and e the electron charge. For a classic resistive wall impedance and a parabolic line density, we can get an analytic formula: for a bunch of total length 4sz=4stc (in meters), L=26658.883 being the circumference of the LHC and Lelem the length of the element considered for the impedance (here 7.1 m). G. Rumolo, USPAS 2009 Power loss per unit length : E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Beam parameters (for power loss computation) Energy Bunch length (4 σt) Number of bunches Intensity per bunch 450 GeV 1.4 ns (during MD) 2808 *2 beams 1.15 1011 p/b 3.5 TeV 0.8 ns (during MD) 2808*2 beams 7 TeV 1 ns (nominal) E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Contribution of the aerogel to the power loss? The skin depth of Beryllium at 20 kHz is 0.8 mm  above 20 kHz, what is behind the 0.8 mm thick beam pipe contributes much less Curve to integrate to get power loss  below 20 kHz, the contribution to power loss is negligible As a consequence, the material behind 0.8 mm beam pipe does not contribute (also checked by multilayer calculations) E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Resistive wall contribution: power loss Energy Inner radius Number of layers taken into account Bunch length (4st) Power loss (W/m) – exact Power loss (W/m) – classic approx. 450 GeV 29 mm 1 (Be) 1.4 ns (MD) 0.62 22.5 mm 0.80 (+29%) 0.80 3.5 TeV 0.8 ns (MD) 1.44 1.86 (+29%) 1.86 7 TeV 1 ns (nominal) 1.03 1.33 (+29%) 1.33 2 (Be 0.8mm +air) N/A 2 (NEG 1 μm + Be) → about 30% increase in the power loss, confirmed by classic approximation. Maximum at 3.5 TeV (~1.9 W/m). E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Geometric impedance: ABCI electromagnetic simulations Geometry simulated (perfect conductor): 1 m, inner diameter 58 mm 7.1 m, inner diameter 45 mm 100 mm transition Other parameters for the simulation: 1 mm mesh size, 5 cm rms bunch length, Napoly integration with moving mesh and 4 m wake length. E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

ABCI cavity shape E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Power loss ~ 10-7 W/m (analytic formula: exactly zero) E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011

Effect on beam stability: Longitudinal effective impedance Sacherer longitudinal effective impedance (first headtail mode) for parabolic bunches: Energy Inner radius Nb. of layers taken into account Bunch length (4st) (Z||/n)eff [W] resistive part (exact) (Z||/n)eff [W] total (LHC ring) 450 GeV 29 mm 1 (Be) 1.4 ns (MD) j 1.1 10-5 j 0.09 22.5 mm j 1.3 10-5 7 TeV 1 ns (nominal) j 0.65 10-5 j 0.085 j 0.8 10-5 → Longitudinal effective impedances for both current and future situations are estimated to be negligible with respect to the rest of the ring.

Effect on beam stability: Transverse effective impedance Sacherer transverse effective impedance for water-bag bunches: Energy Inner radius Nb. of layers taken into account Bunch length (4st) Im(Zteff ) [W/m] resistive part (exact) Im(Zteff ) [W/m] geom. part (ABCI) Im(Zteff ) [MW/m] total (LHC ring) 450 GeV 29 mm 1 (Be) 1.4 ns (MD) 169 ~2.4 22.5 mm 361 282 7 TeV 1 ns (nominal) 141 ~25 302 284 → Transverse effective impedances for both current and future situations are estimated to be negligible with respect to the rest of the ring.

Conclusion Power loss (from resistive-wall): at most 1.9 W/m (with bunches of 0.8 ns at 3.5 TeV), increased by 30% with respect to the previous configuration. With our current understanding, there is a very little effect of the vacuum pipe modification on the beam stability (longitudinal and transverse). E. Métral, N. Mounet & B. Salvant - BE/ABP/ICE - Effect on impedance of ATLAS pipe modifications - 21/01/2011