Phase Dynamics of the Ferromagnetic Josephson Junctions

Slides:



Advertisements
Similar presentations
ENERGY CONVERSION ONE (Course 25741) Chapter one Electromagnetic Circuits …continued.
Advertisements

Design of ac susceptometer using closed cycle helium cryostat
October , Chernogolovka 1 Physikalisch-Technische Bundesanstalt, Braunschweig M. Khabipov, D. Balashov, F. Maibaum, A. Zorin Physikalisch-Technische.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
WP-M3 Superconducting Materials PArametric COnverter Detector INFN_Genoa Renzo Parodi.
ABSTRACT Quasiparticle Trapping in Andreev Bound States Maciej Zgirski
Nuclear Magnetic Resonance
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
Materials Science in Quantum Computing. Materials scientist view of qubit Materials –SiOx sub substrate –Superconductor (Al,Nb) –SiO x dielectric –Al0.
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
1 Ferromagnetic Josephson Junction and Spin Wave Resonance Nagoya University on September 5,2009 Sadamichi Maekawa (IMR, Tohoku University) Co-workers:
Spin Excitations and Spin Damping in Ultrathin Ferromagnets D. L. Mills Department of Physics and Astronomy University of California Irvine, California.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Characterisation and Reliability testing of THz Schottky diodes. By Chris Price Supervisor: Dr Byron Alderman December 2006 Preliminary.
Josephson Junctions, What are they?
Statistical Properties of Wave Chaotic Scattering and Impedance Matrices Collaborators: Xing Zheng, Ed Ott, ExperimentsSameer Hemmady, Steve Anlage, Supported.
Submicron structures 26 th January 2004 msc Condensed Matter Physics Photolithography to ~1 μm Used for... Spin injection Flux line dynamics Josephson.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Bloch band dynamics of a Josephson junction in an inductive environment Wiebke Guichard Grenoble University –Institut Néel In collaboration with the Josephson.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
J. R. Kirtley et al., Phys. Rev. Lett. 76 (1996),
Lucian Prejbeanu Spin dynamics workshop, Corfu, october 2005 Traian PETRISOR Master 2 Internship Internship Coordinator Ursula EBELS Magnetization dynamics.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
A. Krawiecki , A. Sukiennicki
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Work in Progress --- Not for Publication 1 ERD WG 1/15/09 ERD TWG Emerging Research Devices Telecon Meeting No. 3 Jim Hutchby - Facilitating Thursday,
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Spin Readout with Superconducting Circuits April 27 th, 2011 N. Antler R. Vijay, E. Levenson-Falk, I. Siddiqi.
DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.
The beam-based alignment and feedback systems, essential operations of the future colliders, use high resolution Beam Position Monitors (BPM). In the framework.
University of Maryland, College Park
Magnetic-Field-Driven in Unconventional Josephson Arrays
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Alessandro Cunsolo INFM Operative Group in Grenoble and CRS-Soft, c/o Institut Laue-Langevin, Grenoble, France On the new opportunities opened by the development.
Ph.D. Candidate: Yunlei Li Advisor: Jin Liu 9/10/03
Panos aliferis IBM Jan. 09 quantum computing hardware with highly biased noise.
Booster bpm’s Jim Crisp 3/29/06. Plate width and linearity with the response linearized along the axis 60 and 20 degree plates become nonlinear in the.
Spin Wave Model to study multilayered magnetic materials Sarah McIntyre.
Multipacting Simulation for the PITZ RF Photo Gun Igor Isaev Unwanted Beam Workshop 2012 Humboldt-University Berlin, The PITZ RF Photo Gun.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Effects of medium voltage potential transformer load on ferroresonance initiation Miroslav Novák Faculty of Mechatronics, Informatics and Interdisciplinary.
(Instrument part) Thanundon Kongnok M
Circuit QED Experiment
Superconducting Qubits
Design and Realization of Decoherence-Free
Advanced LIGO Quantum noise everywhere
Josephson supercurrent through a topological insulator surface state
Light Scattering Spectroscopies
Electron Paramagnetic Resonance
Phase diagram of s-wave SC Introduction
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino1,4, Maurizio De Rosa2, Francesco.
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Josephson Flux Qubits in Charge-Phase Regime
Cavity Quantum Electrodynamics for Superconducting Electrical Circuits
Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
Applied Electromagnetic Waves
Hiroyuki Nojiri, Department of Physics, Okayama University
Norm Moulton LPS 15 October, 1999
ESRF Experimental Contribution Towards Working Group Introduction
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Phase Dynamics of the Ferromagnetic Josephson Junctions I. Petković and M. Aprili Laboratoire de Physique des Solides In collaboration with: François Beuneu, LSI Hervé Hurdequint, LPS Sadamichi Maekawa, Tohoku University Stewart Barnes, University of Miami GDR Physique Mesoscopique, Decembre 8-11 2008, Aussois.

Spin Physics in Superconductors Y = Y0 ei  How j couples to the spin degrees of freedom ? -kF +dkF kF +dkF -kF kF SF: S: Cooper pair Spin splitting - FFLO j = 2 dk x = x Eex ћvF Fulde Ferrell Larkin Ovchinnikov Aharonov-Bohm phase j = A·dl 2е ћ ∫ M(t) in hybrid structures: S F (t) Magnetic Flux Required small junctions 2. Adiabatic phase transformation

Junction Fabrication Nb SEM photo of the mask 1 2 3 Nb PdNi PES Si3N4 2mm SEM photo of the mask 1 2 3 Nb PdNi PES Si3N4 500x500nm 500nm 1mm SEM photos Nb(50nm) PdNi(20nm) NbO IJ cross section: SIFS T=1.2 K T=5.7 K IV curve

Magnetostatics and the Josephson phase j = jo - A·dl 2p Fo ∫ Analogy with Fraunhofer diffraction I=Icsin j (pF/Fo) Ic (F) Ic (0) = sin F = B·S = j 2p Fo A B C time-reversal t -t B -B We measure a shift in the Fraunhofer pattern due to magnetization.

Magnetization Dynamics and the Josephson effect VDC = VDC = wJ dj dt 2e ћ Josephson frequnency j(t) = jo - A(t)·dl 2p Fo ∫ M(t) spin wave resonance wS Resonant coupling wJ ≈ wS 10 mV ~ 5 GHz I V I = + R – k IC2 c’’(wJ) VDC R IC2 2V susceptibility of the ferromagnet JJ X R Z(w) ~ c’’(ws) equivalent circuit :

Josephson spectroscopy of the magnetic modes mm trilayer same cross-section Josephson Resonant cavity non-ferro ferro 9.3 GHz FMR: ws = g (Hk – 4pMs)2 – H2 Hk anisotropy field Ms saturation magnetization 900 G ws= wJ ~ VDC = 23 mV no fitting parameters !

Coupling with external RF – Shapiro step side bands Vac = VDC + Vac(Wt) dj dt 2e ћ cos(Wt) VDC = wJ = nW 2e ћ resonances : n-integer Shapiro steps VDC -50dBm 20dBm with ferromagnetic modes: 2W W W-ws sideband resonances at wJ = nW  ws

Pump probe measurement Phase Dynamics Is there a contribution of magnetization dynamics to the phase noise? I JJ X R C P(I) 37Hz 350mK IS Ir Current-biased Josephson junction j + b j + w02 sin j = hb sin wbt damping RC plasma freq. ramp Ib V SIFS Pump probe measurement pump probe Dt<tj phase relaxation time

Phase Dynamics in the Stationary Regime slow ramp Kramers escape kBT 0.5 K 4.2 K 3 K 2 K 0.8 K 1.1 K Effective temperature equal to bath temperature. No additional temperature due to ferromagnet.

Non-stationary regime - Bifurcation fast ramp ramp freq. wb wb<<tj Kinetic Phase Transition wb≈tj ts tr wb>>tj P(I) I Ir Is Bifurcation timescale is damping time, due to KPT.

Phase Relaxation Time - tj nb=4 kHz nb=6 kHz nb=12 kHz Is Ir N1 – number of events at Ir T=350 mK ramp freq. wb=2pnr N1=1 - A exp (- tj wb ) direct measurement of the phase relaxation time T=350 mK tj ~ 50 ms

Numerical Simulations numerically fitted formula N1=1 – 1.8 exp (- 0.76 ) hb wb b 3/2 b=(RqpC w0) -1 range of parameters: b, wb = 0.0001 - 0.1 w0 T=1.5 K T=0.67 K n* - frequency at which bifurcation starts The phase relaxation is set by the quasiparticle resistance.

Electromagnetic waves inside the ferromagnetic barrier – Fiske steps Fiske step – resonance between em cavity mode and Josephson phase. I Insulator j(x) due to B L non-ferro kn = n p/L ferro wn = Vn = c k 2e h B FERRO NON-FERRO first second Offset in dispersion relation due to ferromagnet.

Fiske resonances and bifurcation To augment sensitivity in bifurcation measurement, we trigger at the Fiske resonance, not Ir bifurcation DC measurement

Conclusions Time reversal symmetry of Josephson coupling. Diffraction pattern with “wedge phase plate” : Fraunhofer pattern with finite Magnetization Spectroscopy of Ferromagnetic modes NanoFMR (105 Ni atoms ) High sensitivity to domain wall dynamics Kinetic phase transition allows to probe the phase relaxation time of strongly underdamped Josephson Junctions. Coupling to EM modes (Fiskes steps)