Ionic and Covalent bonding and nomenclature

Slides:



Advertisements
Similar presentations
REVIEW We can tell how many electrons and atom will gain or lose by looking at its valence. Metals like to lose electrons. (Cations) –Ex. Na + Nonmetals.
Advertisements

 Valence Electrons: › Electrons in the highest occupied energy level › Determines the chemical properties › = to the group number (groups 1,2,
Nomenclature. Binary Ionic Compounds Naming Metal cation is always written first followed by the non-metal anion. The name of the metal is stated in full.
Chapter 20 Chemical Bonds
Topic 5: Bonding 5.4: Covalent Bonding AIM:. Do Now Draw the Lewis dot structure for magnesium Draw the Lewis dot structure for a magnesium ion Draw the.
Chapter 7 Chemical formulas and Bonding Elements tend to react to fill out their outer electron shell (s and p orbitals). This results in a more stable.
4.1 Representing Ionic Compounds
Chemistry Unit Molecules and Compounds. Chemical Formula Indicates: – _____________________________ – The _______________________________________ of each.
Sec. 2.2 Part A Science 10.  How do atoms form ions?  Why do they want to form ions?  What are positively charged ions called? Negatively charged ions?
Chemical Bonding Review All atoms have valence electrons
 IUPAC (The International Union of Pure and Applied Chemistry) is the organization responsible for the naming of chemical compounds.  Using IUPAC.
Electron Configurations – a Review and More…. Electron Configurations e- configuration notation: Reminder – this notation uses # of e- in a sublevel as.
Chapter 6: Chemical Bonds When the highest occupied energy level of an atom is filled with e, the atom is stable and not likely to react. In other words,
These models are easy to draw – if you follow the steps!
2.2 Molecular Compounds pp. 61 – 69. First Some Useful Vocabulary  Diatomic molecules – consist of two atoms sharing a covalent bond  Polyatomic molecules.
Naming Ionic and Molecular Compounds. International Union of Pure and Applied Chemistry is responsible for naming compounds. IUPAC.
Unit 6 Ionic Compounds Remember…  The electrons in the outermost level or shell are called… –Valence electrons  You can determine the number of valence.
Oxidation Number Rules & FORMULAS. IONS Cations: positively charged atoms (Ca ++ ) All Metals will become cations Anions: negatively charged atoms (O.
Ch 2.1 Elements combine to form compounds. Compounds have different properties from elements Elements have individual properties that help us identify.
Unit 6 Ionic Compounds Remember…  The electrons in the outermost level or shell are called… –Valence electrons  You can determine the number of valence.
Ch 2.1 Elements combine to form compounds

Chemical Bonding and Nomenclature
3.4 – Writing Chemical Formulas and Naming Chemical Compounds
Ionic Bonding and Ionic Compounds
Ionic Compounds & Metals
Chapter 11 Bonding World of Chemistry Zumdahl Last revision Fall 2008
Chapter 6 Objectives Section 1 Introduction to Chemical Bonding
Chemical Bonding.
I. Electrons and Bonding
SECTION 1. INTRODUCTION TO CHEMICAL BONDING
What elements form ionic compounds? How is an ionic bond formed?
Chapter Exercises: Chemical Bonds (I):
In Chemistry there are 3 types of bonds:
Ions In general, atoms are electrically neutral
Naming and Writing IONIC Chemical Formulas
Unit 10 – Chemical Bonding & Nomenclature
Ionic Nomenclature Lesson 7.
Ionic Nomenclature Lesson 5 August 31st, 2010.
Chemistry-Part 2 Notes Chemical Bonding
Polyatomic Ions Lesson 6 September 1st, 2010.
Chapter 22 Chemical Bonds.
CHEMICAL BONDING Cocaine
Covalent Bonding Formation of hydrogen chloride: Cl ® Cl H H +
Section 8.3 Molecular Structures
Ionic Nomenclature Lesson 14 October 22nd, 2010.
Chapter 6 Table of Contents Chemical Bonding
Chemical Bonding.
Structure & Properties of Matter
Chapter 6 Objectives Define chemical bond.
Polyatomic Ions and Molecular Nomenclature
Ionic Bonding.
Chemical Bonding.
Chemical BONDING.
ChemicalBonding Honors Only Problems and questions —
Chapter 6: Chemical Bonds
Chemical Bonding – Ionic Bonds Part 1
Ionic Bonding.
Chapter 6.3 “Ionic Bonding”
Ionic Bonds.
Polyatomic Ions Lesson 7.
Electron Configurations – a Review and More…
Naming Compounds Outcome:
Starter How do you determine whether a compound is covalent or ionic?
Types of Chemical Bonds
Naming Ionic Compounds
Unit 6 Bonding How elements interact..
Writing Formulas Chemistry 7(B)
Chemical Bonding.
Chemical Formulas and Chemical Compounds
Presentation transcript:

Ionic and Covalent bonding and nomenclature Unit 1 Week 3 Thursday Ionic and Covalent bonding and nomenclature

Ionic Nomenclature

Nomenclature a branch of taxonomy concerned with the application of scientific names to taxa, based on a particular classification scheme and in accordance with agreed international rules and conventions

IUPAC nomenclature  is a system of naming chemical compounds and for describing the science of chemistry in general. It is maintained by the International Union of Pure and Applied Chemistry.

Ionic Binary compounds Metal non-metal -ide

Ionic Binary compounds A binary compound is one that only contains two elements in the compound. It may have multiple atoms of each element but can only have two elements. An ionic binary compound is a compound contains one metal and one non-metal. Either element may have multiple atoms but there can only be the two elements involved.

Ionic Binary Compounds: IUPAC Naming Consists of two types of monoatomic ions The metal ion is always written first and retains its whole name The non-metal is written second and has a slight change, the ending (suffix) is changed to –ide Do not write ones (Ex Na1Cl1) and if both elements have the same number reduce to lowest terms (Ca2O2­ = CaO)

Example Example: Na+ Cl- use the cross over method NaCl IUPAC name: sodium chloride The metal name is written in full and the non-metal has the –ide­ suffix added to it. Sodium chloride

Binary compounds can be made up of more than two ions, provided that there are only two types of elements. Example: Al2O3 STUDY TIP: All metals in group 1 and 2 follow periodic law. Check all the others metals when naming.

Practice Work on the problems given on the sheet.

Ionic Multivalent Binary Compounds Metal (charge) non-metal-ide

Ionic Multivalent Binary Compounds A multivalent compound is one that may have varied numbers of electrons in its valence shell. This occurs with elements that fall outside of the representative elements. The transition metals are elements that commonly have multiple valence shell electrons. This means that they can form compounds in various proportions.

Example: Copper + Oxygen Copper and oxygen could have two different formulas with two completely different properties. CuO and Cu2O In order to differentiate the two compounds we must use a different method to name them to avoid confusion.

Ionic Multivalent Binary Compounds: IUPAC Naming Same as Ionic Binary but it indicates the metals charge List the metal name first After the metal name indicate the ion charge in brackets using roman numerals. The non-metal has -ide suffix added.

Do not write 1’s and reduce when possible ONLY SHOW ROMAN NUMERALS FOR MULTIVALENT COMPOUNDS Not all transition metals are multivalent and thus do not have roman numerals

Example SnO2  Sn2+O -  Sn4+O2-  tin (IV) oxide SnO  Sn+O -  Sn2+O2-  tin (II) oxide

Work on the practice questions, They are homework

Polyatomic Ions

Monatomic Ions Ions that are composed of more than one atom are called monatomic ions. Monoatomic Ion- an ion composed of only one atom. We have only looked at these so far

Polyatomic Ions Polyatomic Ions are ions that are composed of more than one atom. The entire molecule carries a charge to it.

Polyatomic Ions Example- NO3- SO42- PO43-

Bonding Ionic Bonding with polyatomic ions occurs in the same manner as it does with binary atomic molecules. Use the crossover method Be sure that the charge that is crossed over applies to the whole polyatomic ion. If the charge is greater than 1, use brackets around the polyatomic ion to indicate the number applies to the whole ion.

Example 1 Step 1 Na + NO3- Step 2 1+ 1- Na NO3 Step 3 Step 4 NaNO3

Example 2 Step 1 Mg + NO3- Step 2 2+ 1- Mg NO3 Step 3 Step 4 Mg (NO3)2

Mg + ClO3- = Na + SiO32- = Fr + HS- = NH+ + Cl = Li + Cl = Be + O22- = Practice Mg + ClO3- = Na + SiO32- = Fr + HS- = NH+ + Cl = Li + Cl = Be + O22- = Sr + PO43- = Al + BO33- = Al + SO42- = Na + OH- =

Naming Ionic Polyatomic compounds: IUPAC Multivalent: Metal (charge) polyatomic ion Monovalent: Metal polyatomic ion Tertiary ionic compounds are comprised of a metal ion and a polyatomic ion. Write the polyatomic ions in the same way as monatomic ions.

Examples NaOH = Cu(ClO4)2 = Tin (IV) chlorate = sodium hydroxide copper (II) perchlorate Tin (IV) chlorate = Sn (ClO3)4

Oxyanions Oxyanions = a polyatomic ion that includes oxygen. Their name depends on how many Oxygen’s it has in the poly atomic ion.

Oxyanions This also applies to Br and I Example ClO- hypochlorite ion hypo-_________-ite ClO2- chlorite ion ___________-ite ClO3- chlorate ion __________-ate ClO4- perchlorate ion per-_______-ate­   This also applies to Br and I

Practice Do the questions on the note.

Covalent Bonds (p36-39)

Covalent Bond A bond that arises when two atoms share one or more pairs of electrons between them. The shared electron pairs are attracted to the nuclei of both atoms.

Covalent Bonding Lone pair A pair of valence electrons that is not involved in bonding.

Covalent Bonds Unlike ionic compounds, covalent compounds chemical formulas cannot be reduced to their simplest forms. Ex C2H2 is a very different compound from C6H6.

Covalent Bonds Classification of covalent bond molecules Molecules are classified by the number of atoms they contain. -Diatomic molecules only contain two molecules Ex. Carbon monoxide CO

Covalent Bonds -Polyatomic molecules contain more than two molecules Ex Ammonia NH3 A molecule with covalent bonds can also have ionic bonds (ammonium carbonate) NH4+ + CO32-

Elements as Molecules Some elements exist as molecules. diatomic H2 and O2 polyatomic S8 and P4

In ionic bonding atoms lost or gained electrons to form a stable octet for all of the molecules involved. Ex Mg2+ Cl- = MgCl2 Na+ Cl- = NaCl For covalent bonds, atoms can share valence electrons to obtain a stable octet in all of the atoms.

Formation of Covalent Bonds Ex: H has one valence electron. To form a stable octet it needs two electrons. If two Hydrogen atoms were to share their valence electrons they would each have the required two electrons for them to be stable.

Ex: Two Cl atoms. Each Cl atom has 7 electrons Ex: Two Cl atoms. Each Cl atom has 7 electrons. In order for each atom to obtain 8 electrons to fill its outer shell it will have to share an electron with the other Cl atom which will also share an electron. This sharing allows each Cl to have 8 electrons in the valence shell. The other electrons are known as known as lone pairs.

Octet Rule Elements will form bonds, so that in total they all have a full valence shell like a noble gas.

Bonding Capacity The number of electrons lost, gained or shared by an atom when it bonds chemically. Nitrogen has a bonding capacity of three (think back to its charge if it was ionic bonding) Examples: C = 4 N = 3 O = 2 Halogen = 1 Hydrogen = 1

Bonding arrangement How do we decide which atom will go in the middle of the molecule? The element with the highest bonding capacity is usually in the middle. Ex CO2

Bonding Arrangement If there is a choice between central atoms pick the one with the lowest Electronegativity as the central atom. Hydrogen is never a central atom. Halides and oxygen are rarely central atoms but there are exceptions. Ended here

Questions Page 39 # 1-4

Coordinate Covalent Bonds A covalent bond in which both of the shared electrons come from the same element. (sort of like a combination between an ionic bond and a covalent bond)

Once the H+ is bonded all four H are equivalent Once the H+ is bonded all four H are equivalent. The whole molecule shares the charge.

Ex ammonium chloride NH4Cl Ex ammonium chloride NH4Cl . It dissolves rapidly in water to form (polyatomic ion) NH4+ and Cl- . It has many properties of a ionic compound but it does not contain any metals.

Triple bonds > double bonds > single. Strength They are strong; it requires a lot of energy to separate them. Therefore they are relatively stable at high temperatures. The strength of the bond increases as the number of electrons shared is added. Triple bonds > double bonds > single.

Drawing Lewis structures 1. Arrange the symbols of the elements of the compounds as you would expect the atoms to be arranged in the compound. Generally the element with the highest bonding capacity is in the central position. Draw SO3. (put the S in the middle with three O’s around it) S O

2. Add up the number of valence electrons in each atom. If it is a polyatomic ion, add one electron for each unit of negative charge, or subtract one for each unit of positive charge. Then add up the number of electrons needed for all of the elements to have a stable octet. Subtract the total number need by the total number and divide by two. This gives you the number of bonds needed.

What we need What we have Number of bonds 4(8) = 32 What we have 3(6) O + 6 S = 24 Number of bonds (32-24) / 2 = 8/2 = 4 bonds It is divided by two because there are two electrons needed for each bond.

3. Place one pair of electrons between each adjacent pair of elements. Fill in the electrons around SO3 in part 1.

5. Fill in the remaining valence electrons 5. Fill in the remaining valence electrons. Make sure that there is the right number of electrons in total and that there are the right number of bonds.

4. Check to see that there are enough electrons to form the right number of bonds. In this case add an extra set of electrons between one of the Oxygen’s and the Sulfur.

6. Make the shared electrons into dashes and remove the lone pairs.

7. If representing a polyatomic ion place square brackets around the entire structure and write the charge outside the brackets.

Structural Formula The lone pairs are not indicated and thus only the bonds sharing electrons are shown. Atoms that only need one valence electron will generally form single bonds where atoms that need two electrons will generally form two bonds. O2 as an example. Draw the full Lewis structure. N2 with its triple bonds.

More examples on the board

Home work Ionic Nomenclature practice Ionic polyatomic nomenclature Lewis structures Covalent nomenclature –opps, next class Take home quiz – hand in REMINDER – Hand in Line spectra Lab