by Kathryn Lagrue, Alex Carisey, David J

Slides:



Advertisements
Similar presentations
Glioma-derived soluble factor(s) enhance IL-10 signaling.
Advertisements

Lenalidomide augments actin remodeling and lowers NK- cell activation thresholds by Kathryn Lagrue, Alex Carisey, David J. Morgan, Rajesh Chopra, and Daniel.
Down-regulation of MicroRNA-31 in CD4+ T Cells Contributes to Immunosuppression in Human Sepsis by Promoting TH2 Skewing Anesthes. 2016;124(4):
Figure 1. Phenotypic and functional characterization of nasopharyngeal carcinoma (NPC)– and healthy donor (HD)–derived exosomes. A) Electron microscopy.
Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation by Juliette Mouriès, Gabriel Moron, Géraldine Schlecht,
IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity.
IFN-γ and STAT1 are required for efficient induction of CXC chemokine receptor 3 (CXCR3) on CD4+ but not CD8+ T cells by Joseph Barbi, Steve Oghumu, Claudio.
High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-κB ligand through Rho kinase  W. Ariyoshi,
A revised model for the secretion of tPA and cytokines from cultured endothelial cells by Laura Knipe, Athinoula Meli, Lindsay Hewlett, Ruben Bierings,
High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors by Glaivy Batsuli, Wei Deng, John.
by JoAnn Castelli, Elaine K
CD44 ligation on peripheral blood polymorphonuclear cells induces interleukin-6 production by Giuseppe Sconocchia, Laura Campagnano, Domenico Adorno, Angela.
by Rosemary E. Smith, Vanshree Patel, Sandra D. Seatter, Maureen R
Annexin A2 tetramer activates human and murine macrophages through TLR4 by Jennifer F. A. Swisher, Nicholas Burton, Silvia M. Bacot, Stefanie N. Vogel,
by Zhengyan Wang, Tina M. Leisner, and Leslie V. Parise
Lineages of human T-cell clones, including T helper 17/T helper 1 cells, isolated at different stages of anti–factor VIII immune responses by Ruth A. Ettinger,
by Daniela Buglio, Noor M
Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion by Yenan T. Bryceson, Michael E. March, Hans-Gustaf.
HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells by Ennio Carbone, Paola Neri,
by Norman Nausch, Ioanna E
T-cell activation and cytokine production via a bispecific single-chain antibody fragment targeted to blood-stage malaria parasites by Shigeto Yoshida,
Ex vivo induction of multiple myeloma–specific cytotoxic T lymphocytes
Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells by Wuding Zhou, Hetal Patel, Ke Li, Qi Peng, Marie-Bernadette.
by Marlène Brandes, Katharina Willimann, Alois B
Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions by Claire Abbal, Martine Lambelet, Debora Bertaggia, Carole.
Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells by Elke Scandella, Ying Men, Silke Gillessen,
by Loïc Dupré, Grazia Andolfi, Stuart G
Role of IL-9 in the pathophysiology of allergic diseases
by Herbert Bosshart, and Ruth F. Jarrett
Surface IgM stimulation induces MEK1/2-dependent MYC expression in chronic lymphocytic leukemia cells by Sergey Krysov, Samantha Dias, Alex Paterson, C.
Α-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4 by Lucinda Furci, Francesca Sironi, Monica Tolazzi,
Regulatory T cells differentially modulate the maturation and apoptosis of human CD8+ T-cell subsets by Maria Nikolova, Jean-Daniel Lelievre, Matthieu.
Ifosfamide impairs the allostimulatory capacity of human dendritic cells by intracellular glutathione depletion by Maria C. Kuppner, Anabel Scharner, Valeria.
The degree of BCR and NFAT activation predicts clinical outcomes in chronic lymphocytic leukemia by Christine Le Roy, Pierre-Antoine Deglesne, Nathalie.
Human Keratinocytes Express Functional CD14 and Toll-Like Receptor 4
by Ulrike Schleicher, Andrea Hesse, and Christian Bogdan
Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15 by Lazar.
Volume 141, Issue 3, Pages (September 2011)
Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies by Julie Gertner-Dardenne, Cecile Bonnafous,
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia by Shahrzad Jalali, Tammy Price-Troska, Jonas Paludo, Jose Villasboas, Hyo-Jin.
IL-6 is dispensable for the suppressive activity of MDSC on primary CD4+ T-cell activation. IL-6 is dispensable for the suppressive activity of MDSC on.
TIGIT expression in naive T cells is accelerated by coculture with si-tolerant T cells at an early-stimulation stage. TIGIT expression in naive T cells.
Volume 147, Issue 1, Pages (July 2014)
Kathleen R. Bartemes, BA, Gail M. Kephart, BS, Stephanie J
Volume 7, Issue 4, Pages (October 2016)
Volume 26, Issue 4, Pages (April 2018)
by Silvia Mele, Stephen Devereux, Andrea G
Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations  Giovanna.
Fig. 5. pKL cells abrogate the autoimmune response in vitro.
Antigen-Presenting Cell Production of IL-10 Inhibits T-Helper 1 and 17 Cell Responses and Suppresses Colitis in Mice  Bo Liu, Susan L. Tonkonogy, R. Balfour.
Volume 24, Issue 9, Pages (September 2016)
Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis  Deepti R. Nagarkar, PhD, Julie A. Poposki,
T exosomes bind MAdCAM-1 via RA-increased integrin α4β7.
Volume 117, Issue 3, Pages (September 1999)
by Defne Bayik, Debra Tross, Lydia A
Impairment of NK Cell Function by NKG2D Modulation in NOD Mice
A.K.I. Kuroki, Masayuki Iyoda, Takanori Shibata, Tetsuzo Sugisaki 
Volume 64, Issue 6, Pages (December 2003)
TriKE–treated NK cells overcome MDSC-induced immune suppression.
by Rodrigo Abreu, Frederick Quinn, and Pramod K. Giri
IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells by Ana Camelo, Guglielmo Rosignoli, Yoichiro.
by Martin Felices, Behiye Kodal, Peter Hinderlie, Michael F
Volume 21, Issue 4, Pages (April 2013)
by Babs O. Fabriek, Robin van Bruggen, Dong Mei Deng, Antoon J. M
Consequences of ICAM-1 expression modulation on the lysis of T1 and G1 cells. Consequences of ICAM-1 expression modulation on the lysis of T1 and G1 cells.
Volume 126, Issue 5, Pages (May 2004)
by Fabian C. Verbij, Nicoletta Sorvillo, Paul H. P
by Štefan Bálint, Filipa B. Lopes, and Daniel M. Davis
Interleukin-17 is Produced by Both Th1 and Th2 Lymphocytes, and Modulates Interferon-γ- and Interleukin-4-Induced Activation of Human Keratinocytes  Cristina.
The channel-kinase TRPM7 regulates antigen gathering and internalization in B cells by Mithunah Krishnamoorthy, Laabiah Wasim, Fathima Hifza Mohamed Buhari,
Presentation transcript:

Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds by Kathryn Lagrue, Alex Carisey, David J. Morgan, Rajesh Chopra, and Daniel M. Davis Blood Volume 126(1):50-60 July 2, 2015 ©2015 by American Society of Hematology

Lenalidomide treatment increases IFN-γ secretion from NK cells. Lenalidomide treatment increases IFN-γ secretion from NK cells. (A) Healthy donor pNK cells and Daudi target cells were pretreated with DMSO or 0.001 to 10 µM lenalidomide for 24 hours then the Daudi cells were tested for susceptibility to NK-cell–mediated lysis. Graph shows mean ± SD from 3 independent donors. E:T ratio was 10:1. (B-C) pNK cells and (B) Daudi cells or (C) Raji cells were cocultured for 24 hours with DMSO or 0.001 to 10 µM lenalidomide (±150 U/mL IL-2). IFN-γ release was measured by ELISA. E:T ratio was 10:1 in all experiments. Data shows mean ± SD from 3 donors. Significance compared with DMSO (‘0 µM’) condition. (D-G) Primary NK cells were treated with DMSO or 0.1 to 10 µM lenalidomide (+150 U/mL IL-2) for 24 hours in wells coated with (D) anti-CD16 mAb or IgG1 isotype control mAb, (E) recombinant ICAM-1, anti-NKG2D mAb, or both, (F) recombinant ICAM-1, recombinant MICA, or both, (G) anti-NKG2D mAb, anti-2B4, or both. IFN-γ release was assessed by ELISA. Data show mean ± SD from 3 donors. (H-I) Primary NK cells were treated with DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2) for 4 hours in wells coated with (H) anti-CD16 mAb or IgG1 isotype control mAb, or (I) recombinant ICAM-1 or recombinant MICA and ICAM-1. IFN-γ mRNA was assessed by qRT-PCR and is normalized to GAPDH. Data shows triplicate data from (H) 3 donors and (I) 2 donors. Data points for each donor are shaded the same. Red line shows the mean. ns, not significant; qRT-PCR, quantitative reverse transcription polymerase chain reaction. *P < .05, **P < .01, ***P < .001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology

Lenalidomide increases the proportion of pNK cells expressing IFN-γ as well as the amount produced per cell. Lenalidomide increases the proportion of pNK cells expressing IFN-γ as well as the amount produced per cell. (A) Representative microscopy images of F-actin (red) and IFN-γ (shown in grayscale in middle column, and then green in merged image) in pNK cells stimulated for 120 minutes on surfaces coated with IgG1 isotype control mAb or anti-CD16 mAb in the presence of DMSO or 1 µM lenalidomide (+150 U/mL IL-2). Scale bars, 10 µm. (B) The proportion of cells expressing IFN-γ after stimulation on anti-CD16 mAb-coated surfaces in the presence of DMSO or 1 µM lenalidomide (+150 U/mL IL-2) for 30 to 240 minutes. Graph shows mean ± SD, n > 200 from 3 donors. (C) The proportion of cells expressing IFN-γ after stimulation on anti-CD16 mAb-coated surfaces in the presence of DMSO or 1 µM lenalidomide (+150 U/mL IL-2) for 30 to 240 minutes. All cells treated with DMSO or 1 µM lenalidomide for a total of 240 minutes and added to stimulating surfaces in the reverse order for the time course (for example, for 30-minute stimulation, pNK cells were treated with DMSO or 1 µM lenalidomide for 210 minutes before plating). Graph shows mean ± SD, n > 100 from 2 donors. (D) The proportion of pNK cells expressing IFN-γ after stimulation on anti-CD16 mAb-coated surfaces with 0.1 to 10 µM lenalidomide. Graph shows mean ± SD, n > 100 per donor from 3 donors. (E) Sum IFN-γ fluorescence per cell in pNK cells stimulated as in panel D. Each data point represents a single cell and red line shows the mean. n = 75 to 111 from 3 donors. *P < .05, **P < .01, ***P < .001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology

Lenalidomide lowers the threshold for NK-cell activation through NKG2D and CD16. Lenalidomide lowers the threshold for NK-cell activation through NKG2D and CD16. (A-B) pNK cells were treated with DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2) for 24 hours in wells coated with (A) 0.1 to 10 µg/mL MICA plus 2.5 µg/mL ICAM-1 or (B) 1 to 500 µg/mL human IgG. IFN-γ release was measured by ELISA. Data show mean ± SD from 3 donors. Nonlinear regression fit was applied to data. EC50 values were calculated to be: 2.1 µg/mL (MICA DMSO), 1.3 µg/mL (MICA 1.0µM Len), 62 µg/mL (hIgG DMSO), 21 µg/mL (hIgG 1.0µM Len). (C) Representative microscopy images of F-actin (red) and IFN-γ (shown in grayscale in middle column, and then green in merged image) in pNK cells stimulated for 90 minutes on surfaces coated with 1 µg/mL or 2.5 µg/mL MICA (+2.5 µg/mL ICAM-1) in the presence of DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2). Scale bars, 10 µm. (D) The proportion of pNK cells expressing IFN-γ after stimulation with 3 different concentrations of MICA. Graph shows mean ± SD, n > 100 per donor from 3 donors. (E) Sum fluorescence staining for IFN-γ per cell in the same cells as in panel D. Each data point represents a single cell and red line shows the mean. *P < .05, **P < .01, ****P < .0001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology

Lenalidomide treatment augments opening of cortical actin mesh after CD16 stimulation. Lenalidomide treatment augments opening of cortical actin mesh after CD16 stimulation. (A) Superresolution images obtained by STED microscopy of membrane proximal F-actin in pNK cells incubated for 120 minutes on coverslips coated with isotype-matched control antibody or anti-CD16 mAb (both 3 µg/mL) in the presence of DMSO vehicle control or 1.0 µM lenalidomide (+150 U/mL IL-2). Scale bars, 5 µm. Second column: Holes between actin filaments in the central region of the synapse shown as heat maps, with the smallest holes shown in blue (0.01 µm2) and largest holes shown in red (>3 µm2). Third column: Regions are shown within the actin mesh through which a particle (such as an IFN-γ vesicle) of diameter 200 nm (blue) to 800 nm (red) could fit. (B) Histogram of measured vesicle sizes from 10 cells from 2 independent donors. (C) Average size of holes in the actin mesh at the pNK synapse for cells stimulated as in panel A. Each data point represents a single cell; red lines shows mean from 3 donors, n = 18 to 59 per condition. (D) The proportion of the synapse area predicted to be penetrable by a vesicle of 200- to 500-nm diameter for same cells as in panel C. (E) Analysis of STED microscopy of membrane proximal actin in pNK cell stimulated as in panel A plus 5 µg/mL brefeldin A and costained with anti-IFN-γ conjugated to Alexa 647. The proportion of the synapse predicted to be penetrable by a particle of 200- to 500-nm diameter, stratified by whether or not the cells stained positive for IFN-γ. Graph shows mean from 3 donors, n = 50. *P < .05, **P < .01, ***P < .001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology

Lenalidomide treatment augments opening of cortical actin mesh after NKG2D and LFA-1 ligation. Lenalidomide treatment augments opening of cortical actin mesh after NKG2D and LFA-1 ligation. (A) Superresolution images obtained by STED microscopy of membrane proximal F-actin in pNK cells incubated for 120 minutes on coverslips coated with recombinant human ICAM-1 (2.5 µg/mL), anti-NKG2D mAb (3 µg/mL), or both in the presence of DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2). Scale bars, 5 µm. Second column: Holes between actin filaments in the central region of the synapse shown as heat maps, with the smallest holes shown in blue (0.01 µm2) and largest holes shown in red (>3 µm2). Third column: Regions are shown within the actin mesh through which a particle (such as an IFN-γ vesicle) of diameter 200 nm (blue) to 800 nm (red) could fit. (B) Average size of holes in the actin mesh at the pNK synapse for cells stimulated as in panel A. Each data point represents a single cell; red lines shows the mean from 3 donors, n = 18 to 59 per condition. (C) The proportion of the synapse area predicted to be penetrable by a vesicle of 200- to 500-nm diameter for same cells as in panel B. Graph shows mean ± SD. **P < .01, ***P < .001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology

Lenalidomide treatment increases NK-cell activation through rituximab. Lenalidomide treatment increases NK-cell activation through rituximab. (A) pNK cells were treated with DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2) for 24 hours in wells coated with 0.0001 to 100 µg/mL rituximab. IFN-γ release was measured by ELISA. Data shows mean ± SD from 3 donors. Nonlinear regression fit was applied to data. EC50 values calculated to be: 1.6 µg/mL without lenalidomide and 0.4 µg/mL with lenalidomide. (B) Proportion of DMSO-treated cells expressing IFN-γ after stimulation on rituximab-coated surfaces in the presence of DMSO or 1 µM lenalidomide for 30 to 120 minutes. Graph shows mean ± SD, n > 200 from 3 donors. (C) Superresolution images obtained by STED microscopy of membrane proximal F-actin in pNK cells incubated for 60 or 120 minutes on coverslips coated with rituximab (10 µg/mL) in the presence of DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2). Scale bars, 5 µm. Second column: Holes between actin filaments shown as heat maps, with the smallest holes shown in blue (0.01 µm2) and largest holes shown in red (>3 µm2). Third column: Regions are shown through which a particle (such as an IFN-γ vesicle) of diameter 200 nm (blue) to 800 nm (red) could fit. (D) Proportion of the synapse area predicted to be penetrable by a vesicle of 200- to 500-nm diameter for cells stimulated on 10 µg/mL rituximab for 60 minutes. (E) Proportion of the synapse area predicted to be penetrable by a vesicle of 200- to 500-nm diameter for cells stimulated on 10 µg/mL rituximab for 120 minutes. Graph shows mean ± SD, n = 45 from 3 donors. *P < .05, **P < .01, ***P < .001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology

Lenalidomide augments NK-cell IFN-γ production and cortical actin rearrangements in NK cells isolated from MM patients. Lenalidomide augments NK-cell IFN-γ production and cortical actin rearrangements in NK cells isolated from MM patients. (A) Primary NK cells isolated from MM patients were treated with DMSO or 1.0 µM lenalidomide (+150 U/mL IL-2) for 24 hours in wells coated with anti-CD16 mAb or IgG1 isotype-matched control mAb. IFN-γ release was assessed by ELISA. E:T ratio was 10:1. Data shows mean ± SD from 9 MM patients. (B) Proportion of primary NK cells from MM patients expressing IFN-γ after stimulation on anti-CD16 mAb-coated surfaces in the presence of DMSO or 1.0 µM lenalidomide for 120 minutes. Graph shows mean ± SD, n > 100 from 9 MM patients. (C) Average size of holes in the actin mesh at the pNK synapse for NK cells from MM patients stimulated on anti-CD16-coated surfaces and then imaged by STED microscopy. Data show the average per MM patient (20 cells analyzed per patient); black lines show the mean. (D) The proportion of the synapse area predicted to be penetrable by a vesicle of 200- to 500-nm diameter for same cells as in panel C. (E) Superresolution imaged obtained by STED microscopy of membrane proximal actin in NK cells from MM patient who are either in remission or relapsing, treated with DMSO vehicle control or 1.0 µM lenalidomide. Scale bars, 5 µm. (F) IFN-γ release as shown in panel A separated by whether the patients are in remission or relapsing. (G) The proportion of the synapse area predicted to be penetrable by a vesicle of either 200- to 300-nm diameter or 301- to 500-nm diameter in NK cells from MM patients who are in remission or relapsing. *P < .05, **P < .01, ***P < .001, 1-way ANOVA with Tukey posttest. Kathryn Lagrue et al. Blood 2015;126:50-60 ©2015 by American Society of Hematology