CS273A Lecture 7: Neutral evolution: repetitive elements

Slides:



Advertisements
Similar presentations
Genomics – The Language of DNA Honors Genetics 2006.
Advertisements

[Bejerano Fall10/11] 1 Any Project reflections?
Genomes summary 1.>930 bacterial genomes sequenced. 2.Circular. Genes densely packed Mbases, ,000 genes 4.Genomes of >200 eukaryotes (45.
[Bejerano Fall10/11] 1 Primer, Friday 10am, Beckman B-302 Ex. 1 is coming.
[Bejerano Aut08/09] 1 MW 11:00-12:15 in Beckman B302 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean.
Chapter 9: Biotechnology
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
[BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos.
[BejeranoFall14/15] 1 MW 12:50-2:05pm in Beckman B100 Profs: Serafim Batzoglou & Gill Bejerano CAs: Jim Notwell & Sandeep Chinchali.
 3 billion base pairs of DNA and about 30,000 genes  97% of human DNA is junk, as it does not code for protein products  Of this junk, some are regulatory.
Gene Technology Chapters 11 & 13. Gene Expression 0 Genome 0 Our complete genetic information 0 Gene expression 0 Turning parts of a chromosome “on” and.
Biotechnology SB2.f – Examine the use of DNA technology in forensics, medicine and agriculture.
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 11:
DNA Technology Chapter 20.
Selfish DNA Honors Genetics.
Class Notes 1: DNA Manipulation. I. DNA manipulation A. During recent years, scientists have developed a technique to manipulate DNA, enabling them to.
Genome Organization & Evolution. Chromosomes Genes are always in genomic structures (chromosomes) – never ‘free floating’ Bacterial genomes are circular.
Ch. 21 Genomes and their Evolution. New approaches have accelerated the pace of genome sequencing The human genome project began in 1990, using a three-stage.
Used for detection of genetic diseases, forensics, paternity, evolutionary links Based on the characteristics of mammalian DNA Eukaryotic genome 1000x.
Chapter 21 Eukaryotic Genome Sequences
Today… Genome 351, 12 April 2013, Lecture 4 mRNA splicing Promoter recognition Transcriptional regulation Mitosis: how the genetic material is partitioned.
[BejeranoWinter12/13] 1 MW 11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu CS173 Lecture 10:
Eukaryotic Genomes 15 November, 2002 Text Chapter 19.
Introduction to Biotechnology ~manipulating and analyzing DNA.
Main Idea #4 Gene Expression is regulated by the cell, and mutations can affect this expression.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Lecture 10 Genes, genomes and chromosomes
[BejeranoFall15/16] 1 MW 1:30-2:50pm in Clark S361* (behind Peet’s) Profs: Serafim Batzoglou & Gill Bejerano CAs: Karthik Jagadeesh.
Differences in DNA Heterochromatin vs. Euchromatin
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
Eukaryotic genes are interrupted by large introns. In eukaryotes, repeated sequences characterize great amounts of noncoding DNA. Bacteria have compact.
Objective: I can explain how genes jumping between chromosomes can lead to evolution. Chapter 21; Sections ; Pgs Genomes: Connecting.
CS515: Bioinformatic Algorithms
Biotechnology.
Techniques in biotechnology
Bioethics Writing Assignment
DNA Technology and Genomics
Chapter 9: Biotechnology
Evolutionary genomics can now be applied beyond ‘model’ organisms
Genetics and Evolutionary Biology
CS273A Lecture 12: repetitive elements II
Introduction to Biotechnology
PCR & electrophoreisis
DNA Technology Ch 13.
Genomes and Their Evolution
DNA Marker Lecture 10 BY Ms. Shumaila Azam
Chapter 13: transposable elements
Differences in DNA Heterochromatin vs. Euchromatin
Genomes and Their Evolution
SGN23 The Organization of the Human Genome
How are areas of DNA that don’t code for proteins (genes) used by our cells? How can we make use of these areas?
Scientists use several techniques to manipulate DNA.
DNA-based technology New and old technologies that are utilized in biotechnology DNA cloning DNA libraries Polymerase chain reaction (PCR) Genome sequencing.
DNA Fingerprinting Gel Electrophoresis.
Genome Projects Maps Human Genome Mapping Human Genome Sequencing
Evolution of eukaryote genomes
What kinds of things have been learned?
Evolution of eukaryote genomes
CS273A Lecture 10: Transcription Regulation III, Neutral evolution: repetitive elements [Bejerano Fall16/17]
Gene Density and Noncoding DNA
Gene expression and regulation & Mutations
BSC1010: Intro to Biology I K. Maltz Chapter 21.
Chapter 6 Clusters and Repeats.
The Structure of the Genome
Transposable Elements
The Human Genome Source Code
The Human Genome Source Code
Forensic DNA Sadeq Kaabi
The Human Genome Source Code
Presentation transcript:

CS273A Lecture 7: Neutral evolution: repetitive elements MW  12:50-2:05pm in Beckman B100 Profs: Serafim Batzoglou & Gill Bejerano CAs: Jim Notwell & Sandeep Chinchali http://cs273a.stanford.edu [BejeranoFall14/15]

Announcements PS1 coming along… http://cs273a.stanford.edu [BejeranoFall14/15]

The Functional Genome Type # in genome % of genome genes 25,000 2% ncRNA 15,000 1% cis elements 1,000,000 >10% http://cs273a.stanford.edu [BejeranoFall14/15]

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG Genome Evolution http://cs273a.stanford.edu [BejeranoFall14/15] 4

“Nothing in Biology Makes Sense Except in the Light of Evolution” Theodosius Dobzhansky http://bejerano.stanford.edu

One Cell, One Genome, One Replication Every cell holds a copy of all its DNA = its genome. The human body is made of ~1013 cells. All originate from a single cell through repeated cell divisions. egg DNA strings = Chromosomes egg cell cell division genome = all DNA chicken egg chicken ≈ 1013 copies (DNA) of egg (DNA) http://cs273a.stanford.edu [BejeranoFall14/15]

Every Genome is Different DNA Replication is imperfect – between individuals of the same species, even between the cells of an individual. junk functional ...ACGTACGACTGACTAGCATCGACTACGA... chicken TT CAT egg ...ACGTACGACTGACTAGCATCGACTACGA... “anything goes” many changes are not tolerated chicken This has bad implications – disease, and good implications – adaptation. http://cs273a.stanford.edu [BejeranoFall14/15]

Drift, Negative & Positive Selection Time Negative Selection Neutral Drift Positive Selection http://cs273a.stanford.edu [BejeranoFall14/15]

Human Mutation Rate Very recent trio analysis (of a small number of trios) suggest ~40 new mutations in a child that were not present in either parent Mutations range from the smallest possible (single base pair change) to the largest – whole genome duplication. Selection does not tolerate all of these mutation, but it sure does tolerate some. chicken egg chicken

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG Genome Content http://cs273a.stanford.edu [BejeranoFall14/15] 10

Why this cartoon? http://cs273a.stanford.edu [BejeranoFall14/15]

Sequences that repeat many times in the genome Take up cumulatively a whooping half of the genome Come in two major, very different, flavors I II http://cs273a.stanford.edu [BejeranoFall14/15]

I. Interspersed Repeats / TEs [Adapted from Lunter] http://cs273a.stanford.edu [BejeranoFall14/15]

http://cs273a.stanford.edu [BejeranoFall14/15]

DNA Transposons http://cs273a.stanford.edu [BejeranoFall14/15]

Genomic Transmission For repeat copies to accumulate through human generations they must make it into the germline cells (eggs & sperms). Equally true for any genomic mutation. egg DNA strings = Chromosomes egg cell cell division genome = all DNA chicken egg chicken ≈ 1013 copies (DNA) of egg (DNA) http://cs273a.stanford.edu [BejeranoFall14/15]

LINE & SINE Elements http://cs273a.stanford.edu [BejeranoFall14/15]

Retrovirus-like Elements http://cs273a.stanford.edu [BejeranoFall14/15]

TE composition and assortment vary among eukaryotic genomes 100% 80% 60% DNA transposons 40% LTR Retro. Non-LTR Retro. 20% Rice Fugu Mouse Human Slime mold Neurospora Arabidopsis Nematode Mosquito Drosophila Budding yeast Fission yeast http://cs273a.stanford.edu [Bejerano Fall09/10] Feschotte & Pritham 2006

Repeats: mostly neutral Most repeat events/instances are neutral. Ie, a repeat instance is dropped in a new place, and joins the rest of the neutral DNA, gradually decaying over time. Many repeat copies are “dead as a duck” on arrival at their new location (eg 5’ truncation). Some instances may be active (spawn new instances) for a while, but when an active copy is hit by a mutation – the host is not affected, the instance is inactivated and decays away. http://cs273a.stanford.edu [BejeranoFall14/15]

Repeat Ages http://cs273a.stanford.edu [BejeranoFall14/15]

INTERSPECIES VARIATION IN GENOME SIZE WITHIN VARIOUS GROUPS OF ORGANISMS Figure from Ryan Gregory (2005)

The amount of TE correlate positively with genome size Mb Genomic DNA 3000 2500 TE DNA 2000 Protein-coding DNA 1500 1000 500 Rice Plasmodium Slime mold Brassica Maize Mosquito Neurospora Arabidopsis Sea squirt Nematode Drosophila Zebrafish Fugu Budding yeast Fission yeast Mouse Human http://cs273a.stanford.edu [Bejerano Fall09/10] Feschotte & Pritham 2006

The proportion of protein-coding genes decreases with genome size, while the proportion of TEs increases with genome size TEs Protein-coding genes Gregory, Nat Rev Genet 2005

Repeats: not just neutral So far we treated all repeat proliferation events as neutral. While the majority of them appear to be neutral, this is certainly not the case for all repeat instances. And because there are so many repeat instances even a small fraction of all repeats can be a big set compared to other types of elements in the genome. (Eg, 1% of ½ the genome is still a lot) http://cs273a.stanford.edu [BejeranoFall14/15]

http://cs273a.stanford.edu [BejeranoFall14/15]

http://cs273a.stanford.edu [BejeranoFall14/15]

Repeats & Retroposed Genes Retrogenes (“retrotranscribed”): Protein coding RNA that was reverse transcribed and inserted back into the genome. The RNA can be grabbed at any stage (partial/full transcript, before/during/after all introns are spliced). Remember how LINEs reverse transcribe copies of themselves back into the genome? How they sometimes reverse transcribe SINEs “by mistake”? Well, they also grab m/ncRNAs and reverse transcribe them into the genome! http://cs273a.stanford.edu [BejeranoFall14/15]

Retroposed Genes & Pseudogenes Pseudogenes (“dead genes”): Genomic sequences that resemble (originated from) genes that no longer make proteins. Retrogenes (“retrotranscribed”): Protein coding RNA that was reverse transcribed and inserted back into the genome. The RNA can be grabbed at any stage (partial/full transcript, before/during/after all introns are spliced). http://cs273a.stanford.edu [BejeranoFall14/15]

Repeat Insertions Can Break Things http://cs273a.stanford.edu [BejeranoFall14/15]

Repeat Insertions Can “Make Things” http://cs273a.stanford.edu [BejeranoFall14/15]

Any Sequence Can Become Functional Random mutation (especially in a large place like our genome) can create functional DNA elements out of neutrally evolving sequences. So is there anything special about a piece of DNA from a repetitive origin that takes on a new function? http://cs273a.stanford.edu [BejeranoFall14/15]

Regulatory elements from obile Elements Co-option event, probably due to favorable genomic context [Yass is a small town in New South Wales, Australia.] http://cs273a.stanford.edu [BejeranoFall14/15]

Britten & Davidson Hypothesis: Repeat to Rewire! Enhancer structure reminder http://cs273a.stanford.edu [BejeranoFall14/15]

The Road to Co-Option Random Mutations Potential Co-Option States Neutral decay Transposition Event http://cs273a.stanford.edu [BejeranoFall14/15]

Inferring Phylogeny Using Repeats [Nishihara et al, 2006] http://cs273a.stanford.edu [BejeranoFall14/15]

Assemby Challenges http://cs273a.stanford.edu [BejeranoFall14/15]

Transposons as Genetics Engineering Tools Human Gene Therapy http://cs273a.stanford.edu [BejeranoFall14/15]

Repeats: fun conspiracy theories 1. Repeats wreck so much havoc in the genome, by inserting themselves, deleting segments between instances and more – they make the genome feel like a “rolling sea”. Maybe it is because of them that enhancers “learned” to work irrespective of distance and orientation? 2. When the last active copy of a repeat dies, all instances of the repeat are now decaying. Wait long enough and they lose resemblance to each other. Look in 200My and you never know they belonged to the same repeat family. So… if half the genome is recognizable as repetitive now, how much of the genome originated from repeats? Most of it? http://cs273a.stanford.edu [BejeranoFall14/15]

Repeats: fun conspiracy theories 3. If repeats do significantly accelerate the rate of creation of novel functional (gene/regulation) elements – how many functional elements today came from repeats (including old ones we no longer can recognize as such)? Most? 4. Is that why our genome “tolerates” these elements? 5. You make a conspiracy theory… 6. You think of ways* to solve one! * Computationally. Evolution is mostly computational business. http://cs273a.stanford.edu [BejeranoFall14/15]

II. Simple Repeats Every possible motif of mono-, di, tri- and tetranucleotide repeats is vastly overrepresented in the human genome. These are called microsatellites, Longer repeating units are called minisatellites, The real long ones are called satellites. Highly polymorphic in the human population. Highly heterozygous in a single individual. As a result microsatellites are used in paternity testing, forensics, and the inference of demographic processes. There is no clear definition of how many repetitions make a simple repeat, nor how imperfect the different copies can be. Highly variable between species: e.g., using the same search criteria the mouse & rat genomes have 2-3 times more microsatellites than the human genome. They’re also longer in mouse & rat. AAAAAAAAA CACACACAC CAACAACAA http://cs273a.stanford.edu [BejeranoFall14/15]

DNA Replication http://cs273a.stanford.edu [BejeranoFall14/15]

Simple Repeats Create Funky DNA structures http://cs273a.stanford.edu [BejeranoFall14/15]

These Bumps Give The DNA Polymerase Hiccups http://cs273a.stanford.edu [BejeranoFall14/15]

Expandable Repeats and Disease http://cs273a.stanford.edu [BejeranoFall14/15]

Restriction Enzymes Restriction enzymes recognize and make a cut within specific DNA sequences, known as restriction sites. This is usually a 4-6 base pair palindromic sequence. Naturally found in different types of bacteria Bacteria use restriction enzymes to protect themselves from foreign DNA Many have been isolated and sold for use in lab work blunt end sticky end http://cs273a.stanford.edu [BejeranoFall14/15]

DNA Fingerprint Basics DNA fragments of different size will be produced by a restriction enzyme that cuts at the points shown by the arrows.

DNA fragments are then separated based on size using gel electrophoresis.

DNA Fingerprinting can be used in paternity testing or murder cases.

There are Tracks for it http://cs273a.stanford.edu [BejeranoFall14/15]

Interspersed vs. Simple Repeats From an evolutionary point of view transposons and simple repeats are very different. Different instances of the same transposon share common ancestry (but not necessarily a direct common progenitor). Different instances of the same simple repeat most often do not. http://cs273a.stanford.edu [BejeranoFall14/15]