Lecture 7 OUTLINE Poisson’s equation Work function

Slides:



Advertisements
Similar presentations
6.1 Transistor Operation 6.2 The Junction FET
Advertisements

Metal-semiconductor (MS) junctions
Department of Electronics Semiconductor Devices 26 Atsufumi Hirohata 11:00 Tuesday, 2/December/2014 (P/T 006)
Spring 2007EE130 Lecture 13, Slide 1 Lecture #13 ANNOUNCEMENTS Quiz #2 next Friday (2/23) will cover the following: – carrier action (drift, diffusion,
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Lecture #12 OUTLINE Metal-semiconductor contacts (cont.)
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Lecture 2 OUTLINE Important quantities Semiconductor Fundamentals (cont’d) – Energy band model – Band gap energy – Density of states – Doping Reading:
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Integrated Circuit Devices Professor Ali Javey Summer 2009 MS Junctions Reading: Chapter14.
ENE 311 Lecture 9.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
President UniversityErwin SitompulSDP 11/1 Lecture 11 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
ECE 875: Electronic Devices
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Chapter 14. MS Contacts and Practical Contact Considerations
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 2 OUTLINE Important quantities
Equilibrium carrier concentrations
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Chapter 5. pn Junction Electrostatics
Announcements HW1 is posted, due Tuesday 9/4
A p-n junction is not a device
Junction Field Effect Transistor (JFET)
Lecture #12 OUTLINE Metal-semiconductor contacts (cont.)
Lecture #5 OUTLINE Intrinsic Fermi level Determination of EF
Read: Chapter 2 (Section 2.3)
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 7 OUTLINE Poisson’s equation Work function
EE130/230A Discussion 5 Peng Zheng.
Chapter 4.1 Metal-semiconductor (MS) junctions
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
pn Junction Electrostatics
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
pn Junction Electrostatics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 6 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 6 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE130/230A Discussion 4 Peng Zheng.
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Presentation transcript:

Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts Equilibrium energy band diagrams Depletion-layer width Reading: Pierret 5.1.2, 14.1-14.2; Hu 4.16

Poisson’s Equation Gauss’ Law: E(x) E(x+Dx) s : permittivity (F/cm) area A E(x) E(x+Dx) Dx s : permittivity (F/cm)  : charge density (C/cm3) EE130/230M Spring 2013 Lecture 7, Slide 2

Charge Density in a Semiconductor Assuming the dopants are completely ionized: r = q (p – n + ND – NA) EE130/230M Spring 2013 Lecture 7, Slide 3

Work Function E0: vacuum energy level FM: metal work function FS: semiconductor work function EE130/230M Spring 2013 Lecture 7, Slide 4

Metal-Semiconductor Contacts There are 2 kinds of metal-semiconductor contacts: rectifying “Schottky diode” non-rectifying “ohmic contact” EE130/230M Spring 2013 Lecture 7, Slide 5

Ideal M-S Contact: FM > FS, n-type Band diagram instantly after contact formation: qVbi = FBn– (Ec – EF)FB Equilibrium band diagram: n Schottky Barrier Height: W EE130/230M Spring 2013 Lecture 7, Slide 6

Ideal M-S Contact: FM < FS, n-type Band diagram instantly after contact formation: Equilibrium band diagram: EE130/230M Spring 2013 Lecture 7, Slide 7

Ideal M-S Contact: FM < FS, p-type semiconductor Band diagram instantly after contact formation: Equilibrium band diagram: Schottky Barrier Height: FBp qVbi = FBp– (EF – Ev)FB W EE130/230M Spring 2013 Lecture 7, Slide 8

Ideal M-S Contact: FM > FS, p-type semiconductor Band diagram instantly after contact formation: Equilibrium band diagram: EE130/230M Spring 2013 Lecture 7, Slide 9

Effect of Interface States on FBn Ideal M-S contact: FBn = FM – c Real M-S contacts: A high density of allowed energy states in the band gap at the M-S interface “pins” EF to be within the range 0.4 eV to 0.9 eV below Ec FM FBn EE130/230M Spring 2013 Lecture 7, Slide 10

Schottky Barrier Heights: Metal on Si FBn tends to increase with increasing metal work function EE130/230M Spring 2013 Lecture 7, Slide 11

Schottky Barrier Heights: Silicide on Si Silicide-Si interfaces are more stable than metal-silicon interfaces and hence are much more prevalent in ICs. After metal is deposited on Si, a thermal annealing step is applied to form a silicide-Si contact. The term metal-silicon contact includes silicide-Si contacts. EE130/230M Spring 2013 Lecture 7, Slide 12

The Depletion Approximation The semiconductor is depleted of mobile carriers to a depth W In the depleted region (0  x  W ): r = q (ND – NA) Beyond the depleted region (x > W ): r = 0 EE130/230M Spring 2013 Lecture 7, Slide 13

Electrostatics Poisson’s equation: The solution is: EE130/230M Spring 2013 Lecture 7, Slide 14

Depletion Width, W At x = 0, V = -Vbi W decreases with increasing ND EE130/230M Spring 2013 Lecture 7, Slide 15

Summary: Schottky Diode (n-type Si) metal FM > FS n-type Si Eo cSi FM qVbi = FBn – (Ec – EFS)FB FBn Ec EF Depletion width Ev W EE130/230M Spring 2013 Lecture 7, Slide 16

Summary: Schottky Diode (p-type Si) FM < FS metal p-type Si Eo cSi Ec FM EF Depletion width Ev FBp qVbi = FBp– (EF – Ev)FB W EE130/230M Spring 2013 Lecture 7, Slide 17