Artificial Neural Networks الشبكات العصبية الاصطناعية

Slides:



Advertisements
Similar presentations
NEURAL NETWORKS Biological analogy
Advertisements

Slides from: Doug Gray, David Poole
1 Machine Learning: Lecture 4 Artificial Neural Networks (Based on Chapter 4 of Mitchell T.., Machine Learning, 1997)
Machine Learning Neural Networks.
Neural Network I Week 7 1. Team Homework Assignment #9 Read pp. 327 – 334 and the Week 7 slide. Design a neural network for XOR (Exclusive OR) Explore.
Artificial Neural Network
Machine Learning Neural Networks
1 Neural Networks - Basics Artificial Neural Networks - Basics Uwe Lämmel Business School Institute of Business Informatics
Artificial Intelligence (CS 461D)
1 Chapter 11 Neural Networks. 2 Chapter 11 Contents (1) l Biological Neurons l Artificial Neurons l Perceptrons l Multilayer Neural Networks l Backpropagation.
Introduction to Neural Networks John Paxton Montana State University Summer 2003.
Neural Networks William Lai Chris Rowlett. What are Neural Networks? A type of program that is completely different from functional programming. Consists.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
Introduction to Neural Networks CMSC475/675
1 Introduction to Artificial Neural Networks Andrew L. Nelson Visiting Research Faculty University of South Florida.
CS-485: Capstone in Computer Science Artificial Neural Networks and their application in Intelligent Image Processing Spring
Machine Learning. Learning agent Any other agent.
MSE 2400 EaLiCaRA Spring 2015 Dr. Tom Way
Chapter 14: Artificial Intelligence Invitation to Computer Science, C++ Version, Third Edition.
Presentation on Neural Networks.. Basics Of Neural Networks Neural networks refers to a connectionist model that simulates the biophysical information.
Artificial Neural Nets and AI Connectionism Sub symbolic reasoning.
IE 585 Introduction to Neural Networks. 2 Modeling Continuum Unarticulated Wisdom Articulated Qualitative Models Theoretic (First Principles) Models Empirical.
Explorations in Neural Networks Tianhui Cai Period 3.
Artificial Intelligence Neural Networks ( Chapter 9 )
Semiconductors, BP&A Planning,
Artificial Neural Networks. Applied Problems: Image, Sound, and Pattern recognition Decision making  Knowledge discovery  Context-Dependent Analysis.
1 Machine Learning The Perceptron. 2 Heuristic Search Knowledge Based Systems (KBS) Genetic Algorithms (GAs)
NEURAL NETWORKS FOR DATA MINING
LINEAR CLASSIFICATION. Biological inspirations  Some numbers…  The human brain contains about 10 billion nerve cells ( neurons )  Each neuron is connected.
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
1 Chapter 11 Neural Networks. 2 Chapter 11 Contents (1) l Biological Neurons l Artificial Neurons l Perceptrons l Multilayer Neural Networks l Backpropagation.
Artificial Neural Networks An Introduction. What is a Neural Network? A human Brain A porpoise brain The brain in a living creature A computer program.
© SEMINAR ON ARTIFICIAL NEURAL NETWORK AND ITS APPLICATIONS By Mr. Susant Kumar Behera Mrs. I. Vijaya.
CS 478 – Tools for Machine Learning and Data Mining Perceptron.
Neural Networks Presented by M. Abbasi Course lecturer: Dr.Tohidkhah.
Artificial Neural Networks Chapter 4 Perceptron Gradient Descent Multilayer Networks Backpropagation Algorithm 1.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
Artificial Intelligence Methods Neural Networks Lecture 1 Rakesh K. Bissoondeeal Rakesh K.
Perceptrons Michael J. Watts
Artificial Intelligence CIS 342 The College of Saint Rose David Goldschmidt, Ph.D.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
1 Azhari, Dr Computer Science UGM. Human brain is a densely interconnected network of approximately neurons, each connected to, on average, 10 4.
Intro. ANN & Fuzzy Systems Lecture 3 Basic Definitions of ANN.
Lecture 12. Outline of Rule-Based Classification 1. Overview of ANN 2. Basic Feedforward ANN 3. Linear Perceptron Algorithm 4. Nonlinear and Multilayer.
Computational Intelligence Semester 2 Neural Networks Lecture 2 out of 4.
1 Neural Networks MUMT 611 Philippe Zaborowski April 2005.
INTRODUCTION TO NEURAL NETWORKS 2 A new sort of computer What are (everyday) computer systems good at... and not so good at? Good at..Not so good at..
Introduction to Neural Network Session 1 Course: T0293 – NEURO COMPUTING Year: 2013.
Neural networks.
Introduction to Neural Networks
Neural Networks.
Fall 2004 Perceptron CS478 - Machine Learning.
Artificial Intelligence (CS 370D)
Other Classification Models: Neural Network
Artificial Neural Networks
What is an ANN ? The inventor of the first neuro computer, Dr. Robert defines a neural network as,A human brain like system consisting of a large number.
Dr. Unnikrishnan P.C. Professor, EEE
with Daniel L. Silver, Ph.D. Christian Frey, BBA April 11-12, 2017
OVERVIEW OF BIOLOGICAL NEURONS
XOR problem Input 2 Input 1
Artificial Intelligence CSC 361
Intelligent Leaning -- A Brief Introduction to Artificial Neural Networks Chiung-Yao Fang.
Artificial Intelligence Lecture No. 28
ARTIFICIAL NEURAL networks.
ARTIFICIAL NEURAL NETWORK Intramantra Global Solution PVT LTD, Indore
CSE (c) S. Tanimoto, 2007 Neural Nets
Introduction to Neural Network
David Kauchak CS158 – Spring 2019
PYTHON Deep Learning Prof. Muhammad Saeed.
Machine Learning.
Presentation transcript:

Artificial Neural Networks الشبكات العصبية الاصطناعية

What is a Neural Network? An artificial neural network (ANN) is an information-processing system that has certain performance characteristics in common with biological neural networks. الشبكة العصبية الاصطناعية هي عبارة عن نظام لمعالجة البيانات بشكل يحاكي و يشابه الطريقة التي تقوم بها الشبكات العصبية الطبيعية A method of computing, based on the interaction of multiple connected processing elements. طريقة الحسابات تعتمد على تفاعل عناصر المعالجة المرتبطة المتعددة mathematical models for information processing, which based on the biological prototypes and mechanisms of human brain activities. النماذج الرياضية لمعالجة المعلومات تعتمد على النماذج الطبيعية وآلية نشاط دماغ الإنسان .

Computational models inspired by the human brain: النماذج الحسابية استلهمت من العقل البشري Massively parallel, distributed system, made up of simple processing units (neurons) النظام الموزع المتوازي مؤلف من وحدات معالجة بسيطة (الاعصاب ) Synaptic connection strengths among neurons are used to store the acquired knowledge. شدة الوصلات العصبية بين الخلايا العصبية تستخدم لتخزين المعرفة المكتسبة Knowledge is acquired by the network from its environment through a learning process المعرفة تكتسب في الشبكة من بيئتها من خلال عملية التعليم

History of Neural Networks تاريخ الشبكات العصبية 1943: McCullough and Pitts - Modeling the Neuron for Parallel Distributed Processing 1958: Rosenblatt - Perceptron 1969: Minsky and Papert publish limits on the ability of a perceptron to generalize 1970’s and 1980’s: ANN renaissanceعصر نهضة الشبكات العصبية الاصطناعية 1986: Rumelhart, Hinton + Williams present backpropagation 1989: Tsividis: Neural Network on a chip

Properties of Nervous Systems خصائص الأنظمة العصبية Parallel, distributed information processing معالجة معلومات موزعة ومتوازية High degree of connectivity among basic units درجة عالية للربط بين الوحدات الأساسية Connections are modifiable based on experience الاتصالات والارتباطات تعدل اعتمادا على التجربة Learning is a constant process, and usually unsupervised التعليم هو عملية ثابتة وعادة غير مشرف عليها Learning is based only on local information التعليم يعتمد فقط على المعلومات المحلية

Biological Neuron The basic computational unit in the nervous system is the nerve cell, or neuron. A neuron has: Dendrites (inputs) متحسسات تستقبل الإشارة من الخلايا العصبية الأخرى Cell body وهي تمثل جسم الخليه و هي تقوم على تجميع الإشارات المستقبلة من dendrites Axon (output) ترسل الإشارة إلى الخلية التالية

The schematic model of a biological neuron Synapses Dendrites Soma Axon Dendrite from other Axon from other neuron

Model of an artificial neuron

Model of an artificial neuron Terminology(المصطلحات ) x1, x2, ...., xn are the inputs to the neuron w1, w2, ...., wn are real-valued parameters called weights net = w1 x1 + w2 x2 +…+ wn xn is called the weighted sum f: is called the activation function?(تابع التفعيل ) y = f(net) is the output of the neuron

Model of an artificial neuron

Network Architecture Single layer net Single layer network Input Output layer layer

Multi-layer net x1 x2 Input Output xn Hidden layers

Feed-forward nets شبكات التغذية الأمامية Information only flows one way المعلومات فقط تتبع طريق واحد Data is presented to Input layer البيانات تقدم لطبقة الدخل Passed on to Hidden Layer تمرر إلى الطبقة المخفية Passed on to Output layer تمرر لطبقة الخرج Information is distributed المعلومات موزعة Information processing is parallel معالجة المعلومات يكون بشكل متوازي Internal representation (interpretation) of data التمثيل الداخلي هو تفسير للبيانات

Recurrent Networks الشبكات المتكررة Nodes connect back to other nodes or themselves. Information flow is multidirectional العقد تتصل ببعضها أو بعقد أخرى تدفق المعلومات متعدد الاتجاهات

Learning Algorithm خوارزمية التعليم Supervised Learning Unsupervised Learning 15

Common Activation Functions Identity Function The identity function is given by

Threshold activation function Binary step function Threshold activation function Stepf(x) = 1 if x >= Ø, else 0

Binary sigmoid function

Applications of Artificial Neural Networks Signal processing(معالجة الإشارة ) مثل إخماد الصوت في خطوط التلفون الغاء الصدى Control(التحكم ) مثل يستخدم في الشاحنات وفي تحديد موقع سيارة اجرة Robotics - navigation, vision recognition الانسان الالي – الملاحة – تمييز الرؤية Pattern recognition. التعرف على الأنماط مثل الكتابه اليدويه أو الصور او بصمة اليد أو التوقيع

Medicine. (الطب) تخزين السجلات الطبية بالاعتماد على معلومات الحالة Speech production. (انتاج الاصوات ) Speech recognition. التعرف على الاصوات) ) Vision: face recognition , visual search engines تمييز الوجوه – آلات بحث بصرية Business.(الأعمال ) مثال قواعد لقرارات المراهنة Financial Applications: time series analysis, stock market prediction التطبيقات المالية : تحليل السلاسل الزمنية – تنبؤ سوق الاسهم المالية Data Compression: image, e.g. faces ضغط البيانات : الصور والوجوه Game Playing: backgammon, chess, go, ... الالعاب كالشطرنج ولعبة الطاولة

Applications of Artificial Neural Networks Intelligent Control التحكم الذكي AdvanceRobotics Technical Diagnistics Machine Vision Artificial Intellect with Neural Networks Intelligent Data Analysis and Signal Processing الأنظمة الخبيرة الذكية Image & Pattern Recognition الأنظمة الامنية الذكية Intelligent Expert Systems Intelligentl Medicine Devices Intelligent Security Systems 21 21