Volume 72, Issue 2, Pages (October 2011)

Slides:



Advertisements
Similar presentations
Volume 11, Issue 4, Pages (April 2012)
Advertisements

Volume 204, Issue 1, Pages (January 2011)
Volume 17, Issue 2, Pages (August 2015)
Serotonin Transporter Promoter Gain-of-Function Genotypes Are Linked to Obsessive- Compulsive Disorder  Xian-Zhang Hu, Robert H. Lipsky, Guanshan Zhu,
Visualization of trans-Homolog Enhancer-Promoter Interactions at the Abd-B Hox Locus in the Drosophila Embryo  Matthew Ronshaugen, Mike Levine  Developmental.
Volume 104, Issue 2, Pages (January 2001)
Christina Zarouchlioti, Beatriz Sanchez-Pintado, Nathaniel J
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
Volume 74, Issue 11, Pages (December 2008)
Mutations in the Beta Propeller WDR72 Cause Autosomal-Recessive Hypomaturation Amelogenesis Imperfecta  Walid El-Sayed, David A. Parry, Roger C. Shore,
Jianbin Wang, H. Christina Fan, Barry Behr, Stephen R. Quake  Cell 
Volume 19, Issue 23, Pages (December 2009)
Michael W. Linhoff, Saurabh K. Garg, Gail Mandel  Cell 
Exome Sequencing in Brown-Vialetto-Van Laere Syndrome
Characterization of Fibroblast Growth Factor Receptor 1 in Small-Cell Lung Cancer  Anish Thomas, MD, Jih-Hsiang Lee, MD, Zied Abdullaev, PhD, Kang-Seo.
Eija Siintola, Meral Topcu, Nina Aula, Hannes Lohi, Berge A
Volume 11, Issue 4, Pages (April 2012)
Undifferentiated Small Round Cell Sarcomas with Rare EWS Gene Fusions
Serotonin Transporter Promoter Gain-of-Function Genotypes Are Linked to Obsessive- Compulsive Disorder  Xian-Zhang Hu, Robert H. Lipsky, Guanshan Zhu,
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
Clustered 11q23 and 22q11 Breakpoints and 3:1 Meiotic Malsegregation in Multiple Unrelated t(11;22) Families  Tamim H. Shaikh, Marcia L. Budarf, Livija.
Transcription within a Functional Human Centromere
Rose-Anne Romano, Barbara Birkaya, Satrajit Sinha 
Microarray Techniques to Analyze Copy-Number Alterations in Genomic DNA: Array Comparative Genomic Hybridization and Single-Nucleotide Polymorphism Array 
Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS
Molecular Cytogenetic Evidence for a Common Breakpoint in the Largest Inverted Duplications of Chromosome 15  A.E. Wandstrat, J. Leana-Cox, L. Jenkins,
Detection of bone marrow–derived lung epithelial cells
Volume 59, Issue 4, Pages (August 2008)
The Mouse Spo11 Gene Is Required for Meiotic Chromosome Synapsis
Xianfeng Morgan Xu, Tea Meulia, Iris Meier  Current Biology 
Volume 20, Issue 1, Pages (October 2005)
Volume 57, Issue 2, Pages (January 2015)
Modeling Autism by SHANK Gene Mutations in Mice
Volume 70, Issue 5, Pages (June 2011)
Volume 9, Issue 5, Pages (December 2014)
Mitsutoshi Tominaga, Hideoki Ogawa, Kenji Takamori 
Volume 72, Issue 2, Pages (October 2011)
Volume 17, Issue 2, Pages (August 2015)
Volume 87, Issue 6, Pages (September 2015)
Volume 22, Issue 2, Pages (February 2014)
Bidirectional Transcriptional Inhibition as Therapy for ALS/FTD Caused by Repeat Expansion in C9orf72  Jie Jiang, Don W. Cleveland  Neuron  Volume 92,
Survival of Male Patients with Incontinentia Pigmenti Carrying a Lethal Mutation Can Be Explained by Somatic Mosaicism or Klinefelter Syndrome    The.
Volume 135, Issue 4, Pages (November 2008)
Volume 23, Issue 1, Pages 9-22 (January 2013)
Volume 31, Issue 4, Pages (August 2008)
MiR-125b, a MicroRNA Downregulated in Psoriasis, Modulates Keratinocyte Proliferation by Targeting FGFR2  Ning Xu, Petter Brodin, Tianling Wei, Florian.
Hypermethylation of the CpG Island Near the G4C2 Repeat in ALS with a C9orf72 Expansion  Zhengrui Xi, Lorne Zinman, Danielle Moreno, Jennifer Schymick,
Volume 16, Issue 3, Pages (March 2015)
X Chromosome Inactivation Is Mediated by Xist RNA Stabilization
Volume 128, Issue 6, Pages (March 2007)
Comprehensive, Fine-Scale Dissection of Homologous Recombination Outcomes at a Hot Spot in Mouse Meiosis  Francesca Cole, Scott Keeney, Maria Jasin  Molecular.
TALEN Gene Knockouts Reveal No Requirement for the Conserved Human Shelterin Protein Rap1 in Telomere Protection and Length Regulation  Shaheen Kabir,
E.J. Hollox, J.A.L. Armour, J.C.K. Barber 
Volume 26, Issue 4, Pages (May 2007)
Volume 9, Issue 5, Pages (December 2014)
Codependent Activators Direct Myoblast-Specific MyoD Transcription
Increased Expression of Wnt2 and SFRP4 in Tsk Mouse Skin: Role of Wnt Signaling in Altered Dermal Fibrillin Deposition and Systemic Sclerosis  Julie Bayle,
Biallelic transcription of Igf2 and H19 in individual cells suggests a post-transcriptional contribution to genomic imprinting  Y Jouvenot, F Poirier,
Fig. 3 CSF1 is expressed in human melanoma.
Disruption of ERBB2IP Is not Associated with Dystrophic Epidermolysis Bullosa in Both Father and Son Carrying a Balanced 5;13 Translocation  Margarita.
Volume 20, Issue 6, Pages (December 2005)
Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell Cycle Progression in Epidermal Cells  Dario Antonini, Monia T. Russo, Laura.
Volume 31, Issue 4, Pages (August 2008)
Volume 80, Issue 2, Pages (October 2013)
Volume 18, Issue 7, Pages (July 2010)
Volume 41, Issue 2, Pages (January 2011)
Volume 87, Issue 1, Pages (October 1996)
A 22q11.2 Deletion That Excludes UFD1L and CDC45L in a Patient with Conotruncal and Craniofacial Defects  Sulagna C. Saitta, James M. McGrath, Holly Mensch,
Volume 103, Issue 5, Pages (November 2000)
Volume 33, Issue 3, Pages (May 2015)
Presentation transcript:

Volume 72, Issue 2, Pages 257-268 (October 2011) A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21- Linked ALS-FTD  Alan E. Renton, Elisa Majounie, Adrian Waite, Javier Simón-Sánchez, Sara Rollinson, J. Raphael Gibbs, Jennifer C. Schymick, Hannu Laaksovirta, John C. van Swieten, Liisa Myllykangas, Hannu Kalimo, Anders Paetau, Yevgeniya Abramzon, Anne M. Remes, Alice Kaganovich, Sonja W. Scholz, Jamie Duckworth, Jinhui Ding, Daniel W. Harmer, Dena G. Hernandez, Janel O. Johnson, Kin Mok, Mina Ryten, Danyah Trabzuni, Rita J. Guerreiro, Richard W. Orrell, James Neal, Alex Murray, Justin Pearson, Iris E. Jansen, David Sondervan, Harro Seelaar, Derek Blake, Kate Young, Nicola Halliwell, Janis Bennion Callister, Greg Toulson, Anna Richardson, Alex Gerhard, Julie Snowden, David Mann, David Neary, Michael A. Nalls, Terhi Peuralinna, Lilja Jansson, Veli-Matti Isoviita, Anna-Lotta Kaivorinne, Maarit Hölttä-Vuori, Elina Ikonen, Raimo Sulkava, Michael Benatar, Joanne Wuu, Adriano Chiò, Gabriella Restagno, Giuseppe Borghero, Mario Sabatelli, David Heckerman, Ekaterina Rogaeva, Lorne Zinman, Jeffrey D. Rothstein, Michael Sendtner, Carsten Drepper, Evan E. Eichler, Can Alkan, Ziedulla Abdullaev, Svetlana D. Pack, Amalia Dutra, Evgenia Pak, John Hardy, Andrew Singleton, Nigel M. Williams, Peter Heutink, Stuart Pickering-Brown, Huw R. Morris, Pentti J. Tienari, Bryan J. Traynor  Neuron  Volume 72, Issue 2, Pages 257-268 (October 2011) DOI: 10.1016/j.neuron.2011.09.010 Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 Pedigrees of Patients Carrying the C9ORF72 GGGGCC Hexanucleotide Repeat Expansion (A–E) Pedigrees of patients with the hexanucleotide repeat expansion. Mutant alleles are shown by mt, whereas wild-type alleles are indicated by wt. Inferred genotypes are in brackets. Blue diamonds represent a diagnosis of ALS, orange diamonds represent FTD, and green diamonds represent ALS-FTD. Probands are indicated by arrows. Sex of the pedigree members is obscured to protect privacy. Neuron 2011 72, 257-268DOI: (10.1016/j.neuron.2011.09.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 GGGGCC Hexanucleotide Repeat Expansion in the First Intron and Promoter of C9ORF72 (A) Physical map of the chromosome 9p21 ALS/FTD locus showing the p values for SNPs genotyped in the previous GWAS (Laaksovirta et al., 2010), the location of the GWAS association signal within a 232 kb block of linkage disequilibrium, the MOBKL2B, IFNK, and C9ORF72 genes within this region, and the position of the GGGGCC hexanucleotide repeat expansion within the two main transcripts of C9ORF72 (RefSeq accession numbers NM_018325.2 and NM_145005.4, see online http://www.ncbi.nlm.nih.gov/RefSeq/ for further details; GenBank accession numbers GI:209863035 and GI:209863036, see online http://www.ncbi.nlm.nih.gov/genbank/ for further details). (B) A graphical representation of primer binding for repeat-primed PCR analysis is shown in the upper panel. In the lower panel, capillary-based sequence traces of the repeat-primed PCR are shown. Orange lines indicate the size markers, and the vertical axis represents fluorescence intensity. A typical saw tooth tail pattern that extends beyond the 300 bp marker with a 6 bp periodicity is observed in the case carrying the GGGGCC repeat expansion. (C) Detection of the repeat expansion in the lymphoblastoid cell line from the affected proband of the GWENT#1 kindred (ND06769) by FISH using Alexa Fluor 488-labeled oligonucleotide probe seen as a green fluorescence signal on one of the homologs of chromosome 9p (i) consistent with a repeat expansion size of more than 1.5 kb. DAPI-inverted image (ii and iv). No hybridization signal was detected on metaphase cells or interphase nuclei from the lymphoblastoid cell line of control individual ND 11463 (iii) and five other normal control individuals (data not shown). Cells were counterstained with 4′,6-diamidino-2-phenylindole (DAPI, red color), 60× objective. Neuron 2011 72, 257-268DOI: (10.1016/j.neuron.2011.09.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 Repeat-Primed PCR Assay Distinguishes Samples Carrying a Pathogenic GGGGCC Hexanucleotide Repeat Expansion in the C9ORF72 Gene from Wild-Type Samples A bimodal distribution is evident with samples carrying the repeat expansion showing 30 or more repeats and control samples having fewer than 20 repeats. The repeat-primed PCR assay determines whether or not a sample carries a large pathogenic expansion but does not measure the actual number of repeats in a large pathogenic expansion. (A) Histogram of repeat lengths based on the repeat-primed PCR assay observed in Finnish cases (n = 402). (B) Histogram of repeat lengths based on the repeat-primed PCR assay observed in Finnish controls (n = 478). (C) Histogram of repeat lengths based on the repeat-primed PCR assay in familial ALS cases of general European (non-Finnish) descent (n = 268). (D) Histogram of repeat lengths based on the repeat-primed PCR assay in control samples of European descent (n = 409) and Human Gene Diversity Panel samples (n = 300). Neuron 2011 72, 257-268DOI: (10.1016/j.neuron.2011.09.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 Expression Analysis of C9ORF72 RNA Expression array analysis of C9ORF72 in various human CNS regions obtained from neuropathologically normal individuals (n = 137). Neuron 2011 72, 257-268DOI: (10.1016/j.neuron.2011.09.010) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 5 Preliminary Analysis of C9ORF72 Protein Levels in Control Cell Lines and Cell Lines Derived from ALS Patients (A) Immunocytochemistry of C9ORF72 protein in human-derived primary fibroblasts obtained from a healthy individual (Ctrl fibr.) and from ALS patients (ALS-75 and ALS-50). Green signals represent C9ORF72 (Santa Cruz antibody). Scale bars represent 20 μm. (B) Nuclear staining pattern of C9ORF72 protein in control and ALS fibroblasts. Green signals represent C9ORF72 protein (Santa Cruz) and red signals represent propidium iodide (PI) (nuclear stain). Scale bars represent 20 μm. (C) Immunocytochemistry of C9ORF72 protein in mouse-derived NSC-34 motor neuron cell line. Green signals represent C9ORF72 protein (Santa Cruz), red signals represent propidium iodide (PI) (nuclear stain), and blue signals represent wheat germ agglutinin (WGA) (membrane stain). Scale bar represents 20 μm. (D) Nuclear staining pattern of C9ORF72 protein in NSC-34 mouse motor neuron cell line. Green signals represent C9ORF72 protein, and red signals represent propidium iodide (PI) (nuclear stain). Scale bars represent 20 μm. Neuron 2011 72, 257-268DOI: (10.1016/j.neuron.2011.09.010) Copyright © 2011 Elsevier Inc. Terms and Conditions