الديناميكا الحرارية والميكانيكا الإحصائية للغازات المثالية

Slides:



Advertisements
Similar presentations
Dr Roger Bennett Rm. 23 Xtn Lecture 19.
Advertisements

The microcanonical ensemble Finding the probability distribution We consider an isolated system in the sense that the energy is a constant of motion. We.
Introduction to Statistical Thermodynamics (Recall)
Lecture 22. Ideal Bose and Fermi gas (Ch. 7)
The Maxwell-Boltzmann Distribution Valentim M. B. Nunes ESTT - IPT April 2015.
Chapter 3 Classical Statistics of Maxwell-Boltzmann
1.The Statistical Basis of Thermodynamics 1.The Macroscopic & the Microscopic States 2.Contact between Statistics & Thermodynamics: Physical Significance.
A Box of Particles. Dimensions We studied a single particle in a box What happens if we have a box full of particles?? x y z We get a model of a gas The.
Thermo & Stat Mech - Spring 2006 Class 16 1 Thermodynamics and Statistical Mechanics Probabilities.
Intermediate Physics for Medicine and Biology Chapter 3: Systems of Many Particles Professor Yasser M. Kadah Web:
Chapter 2 Statistical Thermodynamics. 1- Introduction - The object of statistical thermodynamics is to present a particle theory leading to an interpretation.
1 Time Arrow, Statistics and the Universe I Physics Summer School 16 July 2002 K. Y. Michael Wong Outline: * The problem of time arrow * What solution.
MSEG 803 Equilibria in Material Systems 8: Statistical Ensembles Prof. Juejun (JJ) Hu
AME Int. Heat Trans. D. B. GoSlide 1 Non-Continuum Energy Transfer: Gas Dynamics.
Statistical Mechanics
Introduction to Thermostatics and Statistical Mechanics A typical physical system has N A = X particles. Each particle has 3 positions and.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
The Statistical Interpretation of Entropy The aim of this lecture is to show that entropy can be interpreted in terms of the degree of randomness as originally.
Statistical Mechanics Physics 313 Professor Lee Carkner Lecture 23.
Thermodynamic principles JAMES WATT Lectures on Medical Biophysics Dept. Biophysics, Medical faculty, Masaryk University in Brno.
12.3 Assembly of distinguishable particles
The Final Lecture (#40): Review Chapters 1-10, Wednesday April 23 rd Announcements Homework statistics Finish review of third exam Quiz (not necessarily.
Statistical Thermodynamics
Introduction to (Statistical) Thermodynamics
Chapter 2 Statistical Thermodynamics
Molecular Information Content
Statistical Thermodynamics CHEN 689 Fall 2015 Perla B. Balbuena 240 JEB
Summary: Isolated Systems, Temperature, Free Energy Zhiyan Wei ES 241: Advanced Elasticity 5/20/2009.
Statistical Thermodynamics Chapter Introduction The object: to present a particle theory which can interpret the equilibrium thermal properties.
Lecture 9 Energy Levels Translations, rotations, harmonic oscillator
Lecture 15– EXAM I on Wed. Exam will cover chapters 1 through 5 NOTE: we did do a few things outside of the text: Binomial Distribution, Poisson Distr.
 We just discussed statistical mechanical principles which allow us to calculate the properties of a complex macroscopic system from its microscopic characteristics.
Connection between partition functions
Lecture 20. Continuous Spectrum, the Density of States (Ch. 7), and Equipartition (Ch. 6) The units of g(  ): (energy) -1 Typically, it’s easier to work.
Ch 22 pp Lecture 2 – The Boltzmann distribution.
Chapter 19 Statistical thermodynamics: the concepts Statistical Thermodynamics Kinetics Dynamics T, P, S, H, U, G, A... { r i},{ p i},{ M i},{ E i} … How.
2/18/2014PHY 770 Spring Lecture PHY Statistical Mechanics 11 AM – 12:15 & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth.
Lecture 10—Ideas of Statistical Mechanics Chapter 4, Wednesday January 30 th Finish Ch. 3 - Statistical distributions Statistical mechanics - ideas and.
Other Partition Functions
The Canonical Partition Function CHEN 689-Fall 2015.
Lecture 26 — Review for Exam II Chapters 5-7, Monday March 17th
Chapter 6: Basic Methods & Results of Statistical Mechanics
Byeong-Joo Lee Byeong-Joo Lee POSTECH - MSE Statistical Thermodynamic s.
Boltzmann statistics, average values
Chapter-2 Maxwell-Boltzmann Statistics.
14.5 Distribution of molecular speeds
The average occupation numbers
The units of g(): (energy)-1
Lecture 6. Entropy of an Ideal Gas (Ch. 3)
Ideal Bose and Fermi gas
Lecture 19. Boltzmann Statistics (Ch. 6)
6. The Theory of Simple Gases
Statistical Thermodynamics of the Perfect Monatomic Gas
PHYS 213 Midterm Exam HKN Review Session
Boltzmann statistics Reservoir R U0 -  Combined system U0 = const
Lecture 22. Ideal Bose and Fermi gas (Ch. 7)
Thermodynamics and Statistical Mechanics
MIT Microstructural Evolution in Materials 3: Canonical Ensemble
QM2 Concept test 8.1 We have three non-interacting particles in a one-dimensional infinite square well. The energy of the three particle system is
الديناميكا الحرارية والميكانيكا الإحصائية للغازات المثالية
PHYS 213 Midterm Exam HKN Review Session
Lecture 7: Distribution functions in classical monatomic liquids
Chapter 1: Statistical Basis of Thermodynamics
Quantum mechanics II Winter 2012
Statistical Thermodynamics
PHY 711 Classical Mechanics and Mathematical Methods
Thermodynamics and Statistical Physics
Statistical Mechanics and Canonical Ensemble
PHYS 213 Midterm Exam HKN Review Session
QM2 Concept test 8.1 We have three non-interacting particles in a one-dimensional infinite square well. The energy of the three particle system is
Presentation transcript:

الديناميكا الحرارية والميكانيكا الإحصائية للغازات المثالية Instructor:   Name: Dr. Zain Yamani Director of CENT-KFUPM [www.kfupm.edu.sa/cent] Phone: 013-860-4363 Mobile: 0504608515 E-mail: zhyamani@kfupm.edu.sa Time of meetings: Saturdays 9.30 – 11.30 a.m. المحاضرة الخامسة 28 رجب، 1439 هـ

قبل بداية الشرح!  سنقدم على موضوع الفيزياء الإحصائية. ما نريد نغطيه (بعد شرائح قليلة). كيف سنختم الدورة: السبت القادم (و لكن الغالب سنبدأ مبكرا.. عند الثامنة) أعتمد عليكم في قراءة الأبواب: 12، 13 و 14 من الكتاب المقرر. ربما تكون دروس متفرقة (بعد/ قبل؟؟ رمضان) تسهب في ما أنوي أن أختصره. مما يشجعني على إغلاق الدورة عدم الالتفات اللازم لتقييد الدروس، فكيف بالقراءة؟؟ (و غيرها)

Statistical Thermodynamics (or Statistical Mechanics) The Big Picture Energy states and energy levels; degeneracy Macrostates and microstates Thermodynamic probability (Wk: Wahrscheinlichkeit) or Statistical count Distinguishable and indistinguishable particles B-E statistics; F-D statistics; B statistics; M-B statistics B-E distribution function; F-D distribution function; M-B distribution function

Statistical Thermodynamics (or Statistical Mechanics) The Big Picture The statistical interpretation of entropy The partition function (Z: Zustandssumme) or the sum over states Thermodynamic properties of a system (the relation between Z & (F or G, the characteristic equations) to get: P, S, …etc. Apply to IG: The Sackur-Tetrode equation (for S) P V = N k T U = 3/2 N k T (for monatomic IG)

Legendre transformations & TD potentials What do we need to know to completely determine the TD properties of a substance? Equation of state + Energy equation or The characteristic equation (esp. F or G)

Legendre transformations & TD potentials

Legendre transformations & TD potentials

Maxwell’s Relations

The basic postulate of statistical thermodynamics All possible microstates of an isolated assembly are equally probable. Energy states Energy levels Degeneracy Occupation number Macrostate (or configuration) Microstate Indistinguishable particles Distinguishable particles Carter’s chapter-12

What do we mean by macrostate? The macrostate is specified by the number of particles in each of the energy levels of the system. What do we mean by microstates? The microstate: for a system of indistinguishable particles is specified by the number of particles in each energy state. for a system of distinguishable particles is specified by the energy state of each particle.

What do we mean by all possible microstates of an isolated assembly?

Respect statistical considerations (indistinguishable bosons, fermions, or distinguishable)

Respect conservation laws (of energy, number of particles) Thermodynamic probability (Wk or wk) of a macrostate: the number of ways the kth macrostate can be achieved. [aka: statistical count] Thermodynamic probability (W) of the system (true) probability is: pk = wk/W Average occupation number