31-2: القوة الدافعة الكهربية الحركية (القوة الدافعة المستحثة

Slides:



Advertisements
Similar presentations
Chapter 30. Induction and Inductance
Advertisements

Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 20: Electromagnetic Induction.
Chapter 31 Faraday’s Law.
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Dr. Jie ZouPHY Chapter 31 Faraday’s Law. Dr. Jie ZouPHY Outline Faraday’s law of induction Some observations and Faraday’s experiment Faraday’s.
Slide 1Fig 32-CO, p Slide 2  As the source current increases with time, the magnetic flux through the circuit loop due to this current also increases.
Chapter 31 Faraday’s Law.
Biot-Savart Law The Field Produced by a Straight Wire.
Physics 121 Practice Problem Solutions 11 Faraday’s Law of Induction
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
Lect. 15: Faraday’s Law and Induction
Faraday’s Law Faraday’s Law of Induction Faraday’s experiment. When the switch in the primary circuit is closed, the ammeter in the secondary circuit.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Chapter 23 Faraday’s Law and Induction. Michael Faraday 1791 – 1867 Great experimental physicist Contributions to early electricity include Invention.
Nov PHYS , Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #20, Review Part 2 Tues. November Dr. Andrew Brandt HW28 solution.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
General electric flux definition
1 Chapter 30: Induction and Inductance Introduction What are we going to talk about in chapter 31: A change of magnetic flux through a conducting loop.
Chapter 31 Faraday’s Law.
Chapter 31 Faraday’s Law. Induced Fields Magnetic fields may vary in time. Experiments conducted in 1831 showed that an emf can be induced in a circuit.
An RL circuit in which L = 0
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Chapter 31 Faraday’s Law. Introduction This section we will focus on the last of the fundamental laws of electromagnetism, called Faraday’s Law of Induction.
Induced Voltages and Inductance
1 Electromagnetic Induction Chapter Induction A loop of wire is connected to a sensitive ammeter When a magnet is moved toward the loop, the ammeter.
Chapter 31 Faraday’s Law. Michael Faraday Great experimental physicist Great experimental physicist 1791 – – 1867 Contributions to early electricity.
CHAPTER 31) FARADAY’S Law
Faraday’s Law and Induction
Chapter 31 Faraday’s Law Electricity generator, or from B to E. 1.Battery  Chemical emf 2.Motional emf 3.Faraday’s Law of Induction 4.Lentz Law about.
My Chapter 20 Lecture Outline.
Induced Voltages and Inductance
Chapter 31 Faraday’s Law. Faraday’s Law of Induction – Statements The emf induced in a circuit is directly proportional to the time rate of change of.
Chapter 31 Faraday’s Law.
Chapter 30 Lecture 30: Faraday’s Law and Induction: I.
Chapter 20 Induced Voltages and Inductance. clicker A proton is released from right to left across this page. The proton’s path, however, is deflected.
Slide 1Fig 31-CO, p.967. Slide 2 The focus of our studies in electricity and magnetism so far has been the electric fields produced by stationary charges.
Electromagnetic Induction
Induced Voltages and Inductance
Faculty of Engineering Sciences Department of Basic Science 6/21/20161.
Problem 3 An infinitely long wire has 5 amps flowing in it. A rectangular loop of wire, oriented as shown in the plane of the paper, has 4 amps in it.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
INDUCTION PROBLEM 1 A rotating rectangular coil is 12 cm wide and 18 cm long, and is wound with 150 turns of wire with resistivity = 0.5 ohms/m. The coil.
Chapter 31: Faraday’s Law
EMF Induced in a Moving Conductor (“Motional EMF”)
Ch. 21: Magnetic Induction & Faraday’s Law of Induction
Faraday’s Law.
Induced Voltages and Inductance
ElectroMagnetic Induction
Magnetism Equations F = qvB sin q E = F/q E = V/d F = ma ac = v2/r
Lecture 3-5 Faraday’ s Law (pg. 24 – 35)
Warm-up Why do loops of wire in a motor rotate?
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Faraday’s Law and Induction
Induced Voltages and Inductance
General Review Electrostatics Magnetostatics Electrodynamics
Chapter 4 – Time Varying Field and Maxwells Equations
Ch. 21: Magnetic Induction & Faraday’s Law of Induction
I2 is decreasing in magnitude I2 is constant
Active Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a sensitive ammeter, the ammeter deflects as shown, indicating that a.
Phys102 Lecture 18/19 Electromagnetic Induction and Faraday’s Law
Chapter 31 Faraday’s Law.
ElectroMagnetic Induction
ElectroMagnetic Induction
ElectroMagnetic Induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current Right-hand Rule 2 gives direction of Force on a moving positive charge.
ElectroMagnetic Induction
ElectroMagnetic Induction
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Chapter 31 Problems 2,5,13,20.
Presentation transcript:

31-2: القوة الدافعة الكهربية الحركية (القوة الدافعة المستحثة الفصل 31: قانون فاراداي 31-1: قانون فاراداي 31-2: القوة الدافعة الكهربية الحركية (القوة الدافعة المستحثة في موصل يتحرك فى مجال مغناطيسي) Fig 31-CO In a commercial electric power plant, large generators produce energy that is transferred out of the plant by electrical transmission. These generators use magnetic induction to generate a potential difference when coils of wire in the generator are rotated in a magnetic field. The source of energy to rotate the coils might be falling water, burning fossil fuels, or a nuclear reaction. (Michael Melford/Getty Images) Fig 31-CO, p.967

مقدمة: اهتمت دراستنا حتى الآن بالمجالات الكهربي الناشئة عن شحنات كهربية ساكنة والمجالات المغناطيسية الناشئة عن شحنات كهربية متحركة (لتيار الكهربي). سوف ندرس هنا المجالات الكهربية التي تنشأ عن التغير في المجالات المغناطيسية. لقد دلت نتائج التجارب المعملية التي تم إجراءاها بواسطة كل من العالمان فاراداي وهنري على أنه يمكن للتيار الكهربي أن يستحث (يحرض) بدائرة كهربيه نتيجة التغير في المجال المغناطيسي. وعرف ذلك بقانون فاراداي للتحريض Michael Faraday British Physicist and Chemist (1791–1867) Faraday is often regarded as the greatest experimental scientist of the 1800s. His many contributions to the study of electricity include the invention of the electric motor, electric generator, and transformer, as well as the discovery of electromagnetic induction and the laws of electrolysis. Greatly influenced by religion, he refused to work on the development of poison gas for the British military. (By kind permission of the President and Council of the Royal Society) p.968

عند أجراء التجارب المعملية دلت المشاهدات على أنة: 30-1 :قانون فاراداي عند أجراء التجارب المعملية دلت المشاهدات على أنة: عند تقريب قضيب مغناطيسي من دائرة مغلقة، كما هو موضح بالرسم، تتولد قوة دافعة كهربية بالدائرة، - عندما يكون القضيب ساكنا بالنسبة للدائرة فأنة لا يتولد قوة دافعة كهربية بالدائرة. - عندما يتحرك القضيب في الاتجاه المعاكس تتولد قوة دافعة كهربية ويكون اتجاها معاكس للحالة الأولى، Active Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a sensitive ammeter, the ammeter deflects as shown, indicating that a current is induced in the loop. (b) When the magnet is held stationary, there is no induced current in the loop, even when the magnet is inside the loop. (c) When the magnet is moved away from the loop, the ammeter deflects in the opposite direction, indicating that the induced current is opposite that shown in part (a). Changing the direction of the magnet’s motion changes the direction of the current induced by that motion. Fig 31-1, p.969

تتولد قوة دافعة كهربية بالدائرة لا يتولد قوة دافعة كهربية Active Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a sensitive ammeter, the ammeter deflects as shown, indicating that a current is induced in the loop. Fig 31-1a, p.969

تتولد قوة دافعة كهربية ويكون اتجاها معاكس للحالة الأولى وأستنتج أن "التيار الكهربي يمر بالدائرة المغلقة مادام هنالك حركة نسبية بين الملف والمغناطيس". أي أن"يمكن للتيار الكهربي أن يمر بدائرة مغلقة حتى في حالة عدم وجود مصدر للقوة الدافعة الكهربية" ويسمى التيار الكهربي المستحث أو التحريضي وينشأ عن قوة دافعة كهربية تحريضية أو مستحثة. Active Figure 31.1 (b) When the magnet is held stationary, there is no induced current in the loop, even when the magnet is inside the loop. Fig 31-1b, p.969

تتولد ق.د.ك بالملف الثانوي ينشأ مجال مغناطيسي يمر التيار الكهربي بالملف الابتدائي نغلق الدائرة لا تتولد ق.د.ك بالملف الثانوي المجال المغناطيسي تكون شدة ثابتة عندما تكون شدة التيار ثابتة تساوى صفر أو أي قيمة ينخفض مجال مغناطيسي إلى الصفر ينخفض التيار الكهربي إلى الصفر بالملف الابتدائي نفتح الدائرة * أما اتجاه التيار الحثي و ال ق.د.ك. الحثي فيحددهما قانون لينز Lenz’s Law ” يكون للتيار الكهربي اتجاه بحيث يعطي فيضا مغناطيسيا له اتجاه يعاكس التغير في الفيض المغناطيسي الأصلي المسبب له“ أي ان ق د ك الحثية تكون عكسية بحيث تكون موجبة عندما تكون dΦ/dt سالبة وتكون سالبة عندما تكون dΦ/dt موجبة. Active Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is closed, the ammeter in the secondary circuit deflects momentarily. The emf induced in the secondary circuit is caused by the changing magnetic field through the secondary coil. Fig 31-2, p.969

ينص قانون فاراداي على الأتي: " تتناسب القوة الدافعة الكهربية (ق.د.ك.) التأثيرية المتولدة في دائرة مغلقة مع معدل التغير في الفيض المغناطيسي خلال الدائرة - يكون اتجاه التيار التأثيري في الملف الثانوي عكس اتجاه التيار المار بالملف الابتدائي في حالة تزايد التيار أو غلق الدائرة، بينما يكون اتجاه التيار التأثيري في الملف الثانوي في اتجاه التيار المار بالملف الابتدائي في حالة تناقص التيار أو فتح الدائرة.. أذا كانت الدائرة مكونة من N لفات وكلها تتعرض لنفس معدل التغير في الفيض المغناطيسي فأن ق.د.ك. تكون: Active Figure 31.1 (c) When the magnet is moved away from the loop, the ammeter deflects in the opposite direction, indicating that the induced current is opposite that shown in part (a). Changing the direction of the magnet’s motion changes the direction of the current induced by that motion. Fig 31-1c, p.969

المجال المغناطيسي فأن ق.د.ك. تعطى بالمعادلة الآتية: عندما يكون المجال متجانس (منتظم) ومساحة الدائرة عبارة عن مستوي يصنع زاوية ثابتة مع اتجاه المجال المغناطيسي فأن ق.د.ك. تعطى بالمعادلة الآتية: القوة الدافعة الكهربية المستحثة يمكن أن تتواجد نتيجة لأحد الأوضاع الآتية: تغير شدة المجال المغناطيسي مع الزمن، تغير مساحة سطح الدائرة الكهربية مع الزمن، تغير الزاوية بين اتجاه المجال المغناطيسي والعمودي على السطح مع الزمن أي توليفة من الأوضاع السابق ذكرها .

ويتعرض لمجال مغناطيسي منتظم عمودي على مستواه، مثال: ملف مربع الشكل طول ضلعه 18 سم وعدد لفاته 200 لفه، المقاومة الكلية للملف 2 اوم ويتعرض لمجال مغناطيسي منتظم عمودي على مستواه، أوجد ق.د.ك. المتولدة في الملف عند تزايد المجال من صفر إلى 0.5 ويبر لكل م 2 خلال فترة زمنية 8.0 ث وما مقدار التيار المار بالملف؟ Figure 31.3 A conducting loop that encloses an area A in the presence of a uniform magnetic field B. The angle between B and the normal to the loop is . Fig 31-3, p.970

تطبيقات على قانون فاراداي Figure 31.5 Essential components of a ground fault interrupter. Fig 31-5, p.971

31-2 القوة الدافعة الكهربية الحركية (ق.د.ك. المحرضة في ناقل يتحرك في مجال مغناطيسي) في الفقرة السابق تم دراسة ال ق.د.ك. المستحثة نتيجة تغير المجال المغناطيسي مع الزمن. كما هو موضح بالشكل، موصل طوله l ويتحرك بسرعة ثابتة v خلال مجال مغناطيسي منتظم وعمودي على اتجاه حركة الموصل، Figure 31.6 (b) The pickups (the circles beneath the metallic strings) of this electric guitar detect the vibrations of the strings and send this information through an amplifier and into speakers. (A switch on the guitar allows the musician to select which set of six pickups is used.) Charles D. Winters Fig 31-6b, p.972

نتيجة لحركة الموصل فأن الشحنات الكهربية داخل الموصل سوف تكون في حالة حركة، سوف تؤثر قوة مغناطيسية علي الشحنات (F=qv x B) بحيث تتجه الشحنات السالبة إلى أسفل وشحنات الموجبة إلى أعلى تحت تأثير القوة المغناطيسية، ينشأ بين طرفي الموصل مجال كهربي (E) فرق جهد (V) نتيجة استقطاب الشحنات الكهربية عند طرفي الموصل وسوف ي تزايد مع استمرار حركة الموصل خلال المجال المغناطيسي،

تقع الشحنات الكهربية في هذه الحالة تحت تأثير قوتين: القوة المغناطيسية FB = qvB والقوة الكهربية Fe = qE ، وسوف يتوقف عملية فصل واستقطاب الشحنات الكهربية عندما تكون القوتين متساويتين في المقدار أي ويكون فرق الجهد بين طرفي الموصل يساوي سوف يستمر فرق الجهد بين طرفي الموصل ما دام الموصل في حالة حركة خلال المجال المغناطيسي، أذا تحرك الموصل في الاتجاه المعاكس فسوف ينشأ فرق جهد عكسي للوضع الأول. Figure 31.6 (a) In an electric guitar, a vibrating magnetized string induces an emf in a pickup coil. Fig 31-6a, p.972

كما هو موضح بالشكل، عندما يكون موصل متحرك جزء من مسار موصل مغلق ويتحرك بسرعة منتظمة ويقع تحت تأثير مجال مغناطيسي منتظم و ينتج عنة تغير في مساحة سطح المسار المغلق أي تغير زمني في الفيض المغناطيسي. نتيجة لحركة الموصل داخل مجال مغناطيسي منتظم وعمودي على اتجاه الموصل فأن الشحنات الكهربية سوف تستقطب، كما وضحنا سابقا، ويمر تيار كهربي مستحث خلال الدائرة. يتناسب كل من المعدل الزمني لتغير الفيض المغناطيسي والقوة الدافعة الكهربية المستحثة مع المعدل الزمني للتغير في مساحة السطح. Active Figure 31.10 (a) A conducting bar sliding with a velocity v along two conducting rails under the action of an applied force Fapp. The magnetic force FB opposes the motion, and a counterclockwise current I is induced in the loop. (b) The equivalent circuit diagram for the setup shown in part (a). يمكن رسم الدائرة المكافئة كما هو موضح بالشكل (b)، ويكون الشغل المبذول بواسطة القوة الخارجية المحركة للموصل تساوي الطاقة الكهربية المتولدة نتيجة القوة الدافعة الكهربية المستحثة بالدائرة والتي تساوي الطاقة المبددة في المقاومة الخارجية كطاقة حرارية. Fig 31-10, p.974

- القدرة Active Figure 31.10 (a) A conducting bar sliding with a velocity v along two conducting rails under the action of an applied force Fapp. The magnetic force FB opposes the motion, and a counterclockwise current I is induced in the loop. - الطاقة الحركية تتحول إلى طاقة كهربية ثم إلى طاقة حرارية داخل الدائرة. Fig 31-10a, p.974

Active Figure 31.10 (b) The equivalent circuit diagram for the setup shown in part (a). Fig 31-10b, p.974

2- A flat loop of wire consisting of a single turn of cross sectional area 8.00 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.00 Ω?

24- The square loop ….is made of wires with total series resistance 10.0 . It is placed in a uniform 0.10-T magnetic field directed perpendicular into the plane of the paper. The loop, which is hinged at each corner, is pulled as shown until the separation between points A and B is 3.00 m. If this process takes 0.100 s, what is the average current generated in the loop? What is the direction of the current?

13- A long solenoid has 400 turns per meter and carries a current I = (30.0 A)(1 - e1.6t). Inside the solenoid and coaxial with it is a coil that has a radius of 6.00 cm and consists of a total of 250 turns of fine wire. What emf is induced in the coil by the changing current?

20- Consider the arrangement shown in Figure P31. 20. Assume that R= 6 20- Consider the arrangement shown in Figure P31.20. Assume that R= 6.00 , l= 1.20 m, and a uniform 2.50-T magnetic field is directed into the page. At what speed should the bar be moved to produce a current of 0.500 A in the resistor?

39- A long solenoid, with its axis along the x axis, consists of 200 turns per meter of wire that carries a steady current of 15.0 A. A coil is formed by wrapping 30 turns of thin wire around a circular frame that has a radius of 8.00 cm. The coil is placed inside the solenoid and mounted on an axis that is a diameter of the coil and coincides with the y axis. The coil is then rotated with an angular speed of 4.00 rad/s. (The plane of the coil is in the yz plane at t 0.) Determine the emf developed in the coil as a function of time.

Figure 31.11 (Example 31.4) A conducting bar rotating around a pivot at one end in a uniform magnetic field that is perpendicular to the plane of rotation. A motional emf is induced across the ends of the bar. Fig 31-11, p.976

Figure 31.12 (Example 31.5) A conducting bar of length on two fixed conducting rails is given an initial velocity vi to the right. Fig 31-12, p.976

Figure 31.13 (a) As the conducting bar slides on the two fixed conducting rails, the magnetic flux due to the external magnetic field into the page through the area enclosed by the loop increases in time. By Lenz’s law, the induced current must be counterclockwise so as to produce a counteracting magnetic field directed out of the page. (b) When the bar moves to the left, the induced current must be clockwise. Why? Fig 31-13, p.978

Figure 31.13 (a) As the conducting bar slides on the two fixed conducting rails, the magnetic flux due to the external magnetic field into the page through the area enclosed by the loop increases in time. By Lenz’s law, the induced current must be counterclockwise so as to produce a counteracting magnetic field directed out of the page. Fig 31-13a, p.978

Figure 31.13 (b) When the bar moves to the left, the induced current must be clockwise. Why? Fig 31-13b, p.978

Figure 31.14 (a) When the magnet is moved toward the stationary conducting loop, a current is induced in the direction shown. (b) This induced current produces its own magnetic field directed to the left that counteracts the increasing external flux. (c) When the magnet is moved away from the stationary conducting loop, a current is induced in the direction shown. (d) This induced current produces a magnetic field directed to the right and so counteracts the decreasing external flux. Fig 31-14, p.978

Figure 31.14 (a) When the magnet is moved toward the stationary conducting loop, a current is induced in the direction shown. Fig 31-14a, p.978

Figure 31.14 (b) This induced current produces its own magnetic field directed to the left that counteracts the increasing external flux. Fig 31-14b, p.978

Figure 31.14 (c) When the magnet is moved away from the stationary conducting loop, a current is induced in the direction shown. Fig 31-14c, p.978

Figure 31.14 (d) This induced current produces a magnetic field directed to the right and so counteracts the decreasing external flux. Fig 31-14d, p.978

Fig 31-15, p.979

Fig 31-16, p.979

Figure 31.17 (Example 31.6) A current is induced in a metal ring near a solenoid when the switch is opened or thrown closed. Fig 31-17, p.980

Figure 31.17 (Example 31.6) A current is induced in a metal ring near a solenoid when the switch is opened or thrown closed. Fig 31-17a, p.980

Figure 31.17 (Example 31.6) A current is induced in a metal ring near a solenoid when the switch is opened or thrown closed. Fig 31-17b, p.980

Figure 31.17 (Example 31.6) A current is induced in a metal ring near a solenoid when the switch is opened or thrown closed. Fig 31-17c, p.980

Figure 31. 18 (Conceptual Example 31 Figure 31.18 (Conceptual Example 31.7) (a) A conducting rectangular loop of width w and length moving with a velocity v through a uniform magnetic field extending a distance 3w. (b) Magnetic flux through the area enclosed by the loop as a function of loop position. (c) Induced emf as a function of loop position. (d) Applied force required for constant velocity as a function of loop position. Fig 31-18, p.980

Figure 31. 18 (Conceptual Example 31 Figure 31.18 (Conceptual Example 31.7) (a) A conducting rectangular loop of width w and length moving with a velocity v through a uniform magnetic field extending a distance 3w. Fig 31-18a, p.980

Figure 31. 18 (Conceptual Example 31 Figure 31.18 (Conceptual Example 31.7) (b) Magnetic flux through the area enclosed by the loop as a function of loop position. Fig 31-18b, p.980

Figure 31. 18 (Conceptual Example 31 Figure 31.18 (Conceptual Example 31.7) (c) Induced emf as a function of loop position. Fig 31-18c, p.980

Figure 31. 18 (Conceptual Example 31 Figure 31.18 (Conceptual Example 31.7) (d) Applied force required for constant velocity as a function of loop position. Fig 31-18d, p.980

Figure 31.19 A conducting loop of radius r in a uniform magnetic field perpendicular to the plane of the loop. If B changes in time, an electric field is induced in a direction tangent to the circumference of the loop. Fig 31-19, p.981

Figure 31.20 (Example 31.8) A long solenoid carrying a time varying current given by I = Imax cost. An electric field is induced both inside and outside the solenoid. Fig 31-20, p.982

Active Figure 31. 21 (a) Schematic diagram of an AC generator Active Figure 31.21 (a) Schematic diagram of an AC generator. An emf is induced in a loop that rotates in a magnetic field. (b) The alternating emf induced in the loop plotted as a function of time. Fig 31-21, p.983

Active Figure 31. 21 (a) Schematic diagram of an AC generator Active Figure 31.21 (a) Schematic diagram of an AC generator. An emf is induced in a loop that rotates in a magnetic field. Fig 31-21a, p.983

Active Figure 31.21 (b) The alternating emf induced in the loop plotted as a function of time. Fig 31-21b, p.983

Figure 31.22 A loop enclosing an area A and containing N turns, rotating with constant angular speed  in a magnetic field. The emf induced in the loop varies sinusoidally in time. Fig 31-22, p.983

Active Figure 31. 23 (a) Schematic diagram of a DC generator Active Figure 31.23 (a) Schematic diagram of a DC generator. (b) The magnitude of the emf varies in time but the polarity never changes. Fig 31-23, p.984

Active Figure 31.23 (a) Schematic diagram of a DC generator. Fig 31-23a, p.984

Active Figure 31.23 (b) The magnitude of the emf varies in time but the polarity never changes. Fig 31-23b, p.984

Figure 31.24 The engine compartment of the Toyota Prius, a hybrid vehicle. Fig 31-24, p.985

Figure 31.25 Formation of eddy currents in a conducting plate moving through a magnetic field. As the plate enters or leaves the field, the changing magnetic flux induces an emf, which causes eddy currents in the plate. Fig 31-25, p.986

Active Figure 31.26 (a) As the conducting plate enters the field (position 1), the eddy currents are counterclockwise. As the plate leaves the field (position 2), the currents are clockwise. In either case, the force on the plate is opposite the velocity, and eventually the plate comes to rest. (b) When slots are cut in the conducting plate, the eddy currents are reduced and the plate swings more freely through the magnetic field. Fig 31-26, p.987

Active Figure 31.26 (a) As the conducting plate enters the field (position 1), the eddy currents are counterclockwise. As the plate leaves the field (position 2), the currents are clockwise. In either case, the force on the plate is opposite the velocity, and eventually the plate comes to rest. Fig 31-26a, p.987

Active Figure 31.26 (b) When slots are cut in the conducting plate, the eddy currents are reduced and the plate swings more freely through the magnetic field. Fig 31-26b, p.987

Figure 31.27 (Quick Quiz 31.11) In an old-fashioned equal-arm balance, an aluminum sheet hangs between the poles of a magnet. Fig 31-27, p.988

Fig Q31-3, p.990

Fig Q31-5, p.990

Fig Q31-13, p.991

Fig Q31-15, p.991

Fig Q31-16, p.991

Fig Q31-19, p.991

Fig P31-7, p.992

Fig P31-9, p.993

Fig P31-10, p.993

Fig P31-11, p.993

Fig P31-13, p.993

Fig P31-14, p.993

Fig P31-16, p.993

Fig P31-17, p.994

Fig P31-18, p.994

Fig P31-20, p.994

Fig P31-24, p.995

Fig P31-25, p.995

Fig P31-26, p.995

Fig P31-27, p.995

Fig P31-28, p.995

Fig P31-28a, p.995

Fig P31-28b, p.995

Fig P31-28c, p.995

Fig P31-28d, p.995

Fig P31-29, p.996

Fig P31-29a, p.996

Fig P31-29b, p.996

Fig P31-30, p.996

Fig P31-31, p.996

Fig P31-32, p.996

Fig P31-38, p.997

Fig P31-40, p.997

Fig P31-42, p.997

Fig P31-43, p.997

Fig P31-47, p.998

Fig P31-49, p.998

Fig P31-50, p.998

Fig P31-52, p.998

Fig P31-55, p.999

Fig P31-57, p.999

Fig P31-58, p.999

Fig P31-59, p.1000

Fig P31-60, p.1000

Fig P31-62, p.1000

Fig P31-63, p.1000

Fig P31-64, p.1000

Fig P31-66, p.1001

Fig P31-68, p.1001

Fig P31-70, p.1001

Fig P31-72, p.1001