Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc Proiect realizat în cadrul cursului “Rețele de Calculatoare și.

Slides:



Advertisements
Similar presentations
Geographic Routing Without Location Information AP, Sylvia, Ion, Scott and Christos.
Advertisements

Self-Configurable Positioning Technique for Multi-hop Wireless Networks To appear in IEEE Transaction on Networking Chong Wang Center of Advanced Computer.
Localization for Mobile Sensor Networks ACM MobiCom 2004 Lingxuan HuDavid Evans Department of Computer Science University of Virginia.
Dynamic Location Discovery in Ad-Hoc Networks
Proposed ad hoc Routing Approaches Conventional wired-type schemes (global routing, proactive): –Distance Vector; Link State Proactive ad hoc routing:
Aplicatie pentru intarirea capacitatii manageriale Coriolis Consulting pentru INCD-PM Alexandru Darabont.
2009 Pag Pag. 2 Agenda 1.Obiectivul proiectului 2.Parteneri 3.Autentificare versus identificare 4.Schema generala 5.Probleme de rezolvat / rezolvate.
ENHANCING AND EVALUATION OF AD-HOC ROUTING PROTOCOLS IN VANET.
Scalable Routing Protocols for Mobile Ad Hoc Networks Xiaoyan Hong, Kaixin Xu, and Mario Gerla at UCLA.
Dynamic Routing in Mobile Ad Hoc Network 報告者:呂佐鴻 指導教授:李鴻璋.
Differential Ad Hoc Positioning Systems Presented By: Ramesh Tumati Feb 18, 2004.
2/10/2016 Mobile Ad hoc Networks COE 549 Routing Protocols III Tarek Sheltami KFUPM CCSE COE
Fundamentals of Computer Networks ECE 478/578
SECURITATEA ÎN REŢELELE TCP/IP
Mobile Ad Hoc Networks. What is a MANET (Mobile Ad Hoc Networks)? Formed by wireless hosts which may be mobile No pre-existing infrastructure Routes between.
Medium Access Control. MAC layer covers three functional areas: reliable data delivery access control security.
Routing Metrics for Wireless Mesh Networks
Routing Metrics for Wireless Mesh Networks
AODV-OLSR Scalable Ad hoc Routing
Ch 13 WAN Technologies and Routing
Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors
Hacker Detection in Wireless sensor network
A comparison of Ad-Hoc Routing Protocols
Sensor Network Routing
Introduction to Wireless Sensor Networks
Februarie 2018 ASE Bucuresti
Net 435: Wireless sensor network (WSN)
Overview of Unicast Routing Protocols for Multihop Wireless Networks
Ad-hoc On-demand Distance Vector
Routing In Wireless Mesh Networks
Suportul pentru mobilitate la nivel retea
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
Căutarea şi regăsirea informaţiei.
Candidat: Mihai RUSOAIE
Dispozitive de stocare
Internet-of-Things (IoT)
Căutarea şi regăsirea informaţiei.
Paxos Made Simple Autor: Puşcaş Radu George
Gestionarea datelor stiintifice
Retele de calculatoare
Reflexia luminii.
Ad hoc Routing Protocols
Algoritmi de combatere a congestiei
Software product management
by Saltanat Mashirova & Afshin Mahini
WebSite Social Tema 2 WebSite Social.
Routing Metrics for Wireless Mesh Networks
SUBNETAREA.
prof. mrd. Negrilescu Nicolae Colegiul National Vlaicu Voda
TCP/IP peste retele ATM
Apache WEB Server.
Determinarea drumului
INTERNET SERVICII INTERNET.
Eclipsele de soare si de luna
Forms (Formulare).
IPv6.
EFECTUL LASER Achim Anamaria,Vlad Lenuta Clasa a XII a D
A great way to create a channel of communication
Functia de documentare
SOAP -Simple Object Access Protocol-
Folosirea de către companii a Twitter, Facebook şi LinkedIn
Software open source in industria software
Implementarea listelor simplu inlantuite
Harti de imagini, Cadre, Stiluri
Costurile de comunicare in masini paralele
استاد راهنما: دکتر کمال جمشیدی ارائه دهنده: حجت اله بهلولی دی ماه 1386
Wireless & Mobile Networking CS 752/852 - Spring 2011
Overview: Chapter 3 Networking sensors
Protocols.
Protocols.
Presentation transcript:

Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc Proiect realizat în cadrul cursului “Rețele de Calculatoare și Internet" Petruș Andrei An 2 – Master IISC

Cuprins Introducere in retele de senzori wireless / ad-hoc Algoritmi de rutare Generalitati Parametrii critici Algoritmul A: LAR Algoritmul B: DREAM

1. Introducere in WSN/WAN Ce este un senzor wireless? SoC compus din: Procesor consum redus Putere de procesare limitata Memorie Capacitate redusa Modul radio Rata de transfer mica Raza de acoperire redusa Senzori Scalari Camere de captura, microfoane Sursa energie P O W E R Sensors Storage Processor Radio Fig. 1 – modulele componente ale unui nod Fig. 2 – exemple de noduri WSN (incapsulat si SMD)

1. Introducere in WSN/WAN Ce este o retea de senzori wireless? Este compusa din mai multi senzori wireless (noduri) Proprietati: Puternic limitate dpdv energetic (compromis performanta/autonomie) Self-management, Self-organizing Scalabile (numar mare de noduri) Heterogene (noduri organizateierarhic, dispozitive cu diferite capabilitati) Adaptabile Securitate sporita Fig. 3 – retea WSN cu senzori distribuiti aleator

1. Introducere in WSN/WAN Diferente intre WSN / WAN Retelele de senzori sunt mai dense Retelele de senzori sunt predispuse la erori/failures Topologia retelelor de senzori de schimba foarte des WSN trimite mesajele broadcast, pe cand in retelele ad-hoc comunicarea este point-to-point Nodurile din WSN pot sau nu sa aiba identificator unic global

1. Introducere in WSN/WAN Aplicatii ale retelelor de senzori wireless Monitorizare Scop stiintific, aplicatii in ecologie. Informatii spatio-temporale in timp real Accesul la zone restrictionate Supraveghere si urmarire Recunoastere Controlul perimetrului Medii “inteligente” Agricultura Procese industriale

1. Introducere in WSN/WAN Aplicatii ale retelelor de senzori wireless Monitorizare Fig. 4 – o implementare WSN in scop de monitorizare a unui obiectiv

1. Introducere in WSN/WAN Aplicatii ale retelelor de senzori wireless Supraveghere si urmarire Fig. 5 – o implementare WSN in scop militar, de recunoastere

1. Introducere in WSN/WAN Aplicatii ale retelelor de senzori wireless Fig. 6 – implementari WSN in aplicatii consumer

2. Algoritmi de rutare Algoritm de rutare -> serviciu Funcții: Defineste procedurile si infrastructura pentru transmiterea mesajelor/datelor intre nodurile retelei Asigura flexibilitate si adaptabilitate retelei Un algoritm de rutare eficient va contribui semnificativ la: autonomia generala a sistemului, confidentialitatea datelor transmise Fig. 7 – frame-ul pachetului intr-o retea TDMA Fig. 8 – o retea WSN

2. Algoritmi de rutare Ce folosesc informatiile de pozitie ale nodurilor in retea: GPSR – Greedy Perimeter Stateless Routing Location-aware long-lived route selection DREAM – Distance Routing Algorithm for Mobility LAR – Location Aided Routing http://www.linuxonly.nl/docs/1/74_Geographical_routing_protocols.html Fig. 9 – GPSR (rutare geografica) Fig. 10 – retea WAN Fig. 11 – LAR (rutarea asistata de localizare)

2a. Parametrii critici Parametrii critici pentru algoritmii de rutare: Eficienta de rutare (correct destination high hit rate) Evitarea buclelor de rutare Alegerea rutelor optime Viteza de rutare Perioada mica de convergenta a retelei Rata ridicata de transfer a pachetelor in retea Eficienta energetica Complexitatea implementarii

2b. Protocolul de rutare LAR Foloseste doar informatii geo pentru descoperirea rutelor si se bazeaza pe un protocol de rutare on-deman (gen Ad-hoc on demand distance-vector routing) Daca emitorul cunoaste o pozitie anterioara a receptorului cat si viteza acestuia de deplasare, el va calcula o arie unde este posibil sa se afle receptorul in momentul actual (expected zone) Astfel, se va minimiza efectul de flood a pachetelor menite sa identifice rutele Pachetele sunt trimise doar in ‘expected zone’ Daca un nod din exteriorul acestei zone primeste un astfel de pachet, il ignora Daca nodul destinatie primeste pachetul, acesta raspunde cu pozitia sa curenta si viteza de deplasare Atunci cand un nod intra in retea, acesta nu cunoaste informatiile de pozitie a celorlalte noduri, motiv pentru care nodul face fall-back si va folosi protocolul fundamental de rutare (flood the entire network) The Location Aided Routing Protocol (LAR, [Ko00]) only uses geographical information for route discovery. It is based on an on-demand protocol, like AODV. If the sender knows where the destination was at some time and it knows its speed, it can determine in which area the destination is now. This area is called the expected zone. LAR uses this to limit the flooding of route discovery packets. Packets are flooded within an defined area containing both the source and the expected zone. When a node outside this area recieves a packet, it ignores it. When the destination receives the route discovery packet, it returns it with its current location and speed, which can assist in future route discoveries. When a node enters the network, it has no information about the geographical position of other nodes. LAR will then fall back to the underlying protocol, which floods the route discovery packet. For LAR to be an improvement over flooding, the network has to be stable. LAR will perform well for moving nodes and disappearing nodes, but not when a lot of new nodes are added to the network. Furthermore, connections in the network has to be stable. If nodes connect to many other nodes for a short time, location information will not be available or accurate enough to make use of LAR. Fig. 13 – LAR (rutarea asistata de localizare)

2b. Protocolul de rutare LAR Pentru ca LAR sa aduca un beneficiu peste traditionalul flood, reteaua trebuie sa fie stabila! LAR va fi eficient in cadrul retelelor dinamice (si/sau) cu noduri care dispar, insa eficienta va fi scazuta atunci cand apar noduri noi. Avantaje: Se evita floodarea inutila a intregii retele Performante ridicate chiar si in retele puternic dinamice Dezavantaje Daca reteaua nu este stabila, algoritmul este ineficient Performantele sunt scazute in retelele in care fluxul de intrare a nodurilor noi este ridicat For LAR to be an improvement over flooding, the network has to be stable. LAR will perform well for moving nodes and disappearing nodes, but not when a lot of new nodes are added to the network. Furthermore, connections in the network has to be stable. If nodes connect to many other nodes for a short time, location information will not be available or accurate enough to make use of LAR.

2c. Protocolul de rutare DREAM Fiecare nod isi cunoaste pozitia Fiecare nod isi comunica adresa si pozitia in retea Cand se trimite un pachet, acesta este inaintat numai pe directia nodului receptor Apare “efectul de distanta”: Nodurile apropiate intre ele isi trimit informatii unul celuilalt mai des decat nodurile intre care exista o distanta mai mare Cand un pachet este transmis de la nodul A catre nodul mai departat B, informatiile despre pozitia nodului B se detaliaza pe masura ce pachetul se propaga in retea Cand un nod isi schimba pozitia dez, acesta trimite mai frecvent informatii vecinilor sai The DREAM protocol was proposed in [Bas98]. It assumes that each node knows its own location. Each node then communicates its address and location through the network. When a packet is sent, it is sent to the direction of the receiving node. DREAM makes use of what is called the distance effect: the greater the distance separating two nodes, the slower they appear to be moving with respect to each other. Neighbours close by are frequently informed of the location of a node; nodes which are farther away only occasionally receive this information. The further a packet travels to its destination, the more detailed the position of the destination becomes. Furthermore, DREAM takes into account the mobility of the nodes. When a node travels fast, it frequently sends its location information to its neighbours. DREAM is similar to HSLS in that the update frequency is dependant on the distance to a node, only it uses coordinates instead of routing paths. This makes it very well scalable, but introduces the problem of determining the location for each node. Fig. 12 – GPSR (rutare geografica)

2c. Protocolul de rutare DREAM Frecventa de actualizare/notificare a informatiilor de pozitie a unui nod A catre nodul B este dependenta de distanta dintre aceste noduri. Informatiile de pozitie constau in coordonate, ci nu in cai de rutare! Avantaje: Permite o scalabilitate ridicata a retelei Algoritmul are o eficienta de rutare buna Dezavantaje Trebuie rezolvata problema achizitiei informatiilor de pozitie pentru fiecare nod (prin GPS = cost ridicat dpdv al eficientei energetice) DREAM is similar to HSLS in that the update frequency is dependant on the distance to a node, only it uses coordinates instead of routing paths. This makes it very well scalable, but introduces the problem of determining the location for each node.

Bibliografie P. Bahl and V. N. Padmanabhan. Radar: An in-building RF-based user location and tracking system. In Proc. IEEE INFOCOMM, paginile 775­784, 2000. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications, 7(5):28-34, 2000. Special Issue on Smart Spaces and Environments. S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-hoc networks. In Proc. of 34th HICSS, volume 9, pagina 9008, 2001. B. Kusy, M. Maroti, G. Balogh, P. V Olgyesi, J. Sallai, A. Nadas, A. Ledeczi, and L. Meertens. Node density independent localization. In Proc. of IPSN, paginile 441-448, 2006. K. Pister L. Doherty and L. EI Ghaoui. Convex optimization methods for sensor node position estimation. In Proc. of IEEE INFOCOMM, paginile 1655-1663, 2001. R. Nagpal, H. E. Shrobe, and J. Bachrach. Organizing a global coordinate system from local information on an ad hoc sensor network. In Proc. of IPSN '03, paginile 333-348, 2003. D. Niculescu and B. Nath. SpotON: An indoor 3-d location sensing technology based on RF signal strength. Technical Report Report #2000­02-02, Department of CSE, University of Washington, Feb. 2000. D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proc. of GLOBECOMM, volume 5, paginile 2926-2931, 2001. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using aoa. In Proc. of IEEE INFOCOMM, paginile 1734-1743, 2003. A. Savvides, C. C. Han, and M. B. Srivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proc. of MobiCom, paginile 166-179, 2001. A. Savvides, H. Park, and M. B. Srivastava. The n-hop multilateration primitive for node localization problems. Mobile Networks and Appli­cations, 8(4):443-451, 2003. A. Vargas. The OMNeT++ discrete event simulation system. In Proc. of ESM), paginile 319-324, 2001.

Algoritmi de rutare bazați pe informațiile de poziție ale nodurilor într-o rețea ad-hoc Proiect realizat în cadrul cursului “Rețele de Calculatoare și Internet" Va mulțumesc !