Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-4: Properties of Rhombuses, Rectangles, and Squares Pearson Texas Geometry ©2016 Holt Geometry.

Slides:



Advertisements
Similar presentations
Review Sections 6.1,6.2,6.4,6.6 Section 6.1
Advertisements

6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
Rectangles, Rhombi, and Squares
Determine if each quadrilateral must be a parallelogram. Tell me why. 1. Warm Up
Properties of special parallelograms
6-4 Rhombuses, Rectangles and Squares Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 6-5 Conditions for Special Parallelograms Warm Up 1. Find AB for A (–3, 5) and B (1, 2). 2. Find the slope of JK for J(–4, 4) and K(3, –3).
A second type of special quadrilateral is a rectangle. A rectangle is a quadrilateral with four right angles. Since a rectangle is a parallelogram by Theorem.
Conditions for Parallelograms
6-4 special parallelograms
Geometry 6-4 Properties of Rhombuses, Rectangles, and Squares.
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
Holt Geometry 6-4 Properties of Special Parallelograms 6-4 Properties of Special Parallelograms Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Properties of Special Parallelograms 6.4 Properties of Rhombuses, Rectangles and Squares I can prove and apply properties of rectangles, rhombuses, and.
Warm Up Solve for x x – 3 = 12x x – 4 = 90
Holt Geometry 6-4 Properties of Special Parallelograms Entry Task ABCD is a parallelogram. Find each measure. 1. CD2. mC °
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Rhombi and Squares LESSON 6–5. Lesson Menu Five-Minute Check (over Lesson 6–4) TEKS Then/Now New Vocabulary Theorems: Diagonals of a Rhombus Proof: Theorem.
Holt Geometry 6-4 Properties of Special Parallelograms Warm Up Solve for x x – 3 = 12x x – 4 = 90 ABCD is a parallelogram. Find each measure.
Rectangles LESSON 6–4. Lesson Menu Five-Minute Check (over Lesson 6–3) TEKS Then/Now New Vocabulary Theorem 6.13: Diagonals of a Rectangle Example 1:Real-World.
Properties of Special Parallelograms. Since a rectangle is a parallelogram by Theorem 6-4-1, a rectangle “inherits” all the properties of parallelograms.
Warm Up:  Solve for x and y in the following parallelogram. What properties of parallelograms did you use when solving?  What is the measure of CD? 
Special Parallelograms. Warm Up 1.What is the sum of the interior angles of 11-gon. 2.Given Parallelogram ABCD, what is the value of y? 3.Explain why.
Polygons.
Objectives Prove and apply properties of rectangles, rhombuses, and squares. Use properties of rectangles, rhombuses, and squares to solve problems.
7-4 Leaning Objectives To learn about the properties of rectangles, rhombuses, and squares and to apply them while solving problems.
G-4 “I can prove theorems about parallelograms”
Warm Up(On Separate Sheet & Pass Back Papers)
Splash Screen.
8.4 Properties of Rhombuses, Rectangles, and Squares
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Splash Screen.
Properties of Special Parallelograms
6.4 Rhombi, Rectangles, and Squares
Pearson Unit 1 Topic 4: Congruent Triangles 4-5: Isosceles and Equilateral Triangles Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
19/02/2014 CH.7.3 Factoring x2 + bx + c.
18/02/2014 CH.6.5 Conditions for Special Parallelogram
Objectives Prove and apply properties of rectangles, rhombuses, and squares. Use properties of rectangles, rhombuses, and squares to solve problems.
LESSON 6–4 Rectangles.
Pearson Unit 1 Topic 4: Congruent Triangles 4-2: Triangle Congruence by SSS and SAS Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-1: The Polygon Angle-Sum Theorems Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-6: Trapezoids and Kites Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
6-5 Conditions for Rhombuses, Rectangles, and Squares
6-4: Properties of Special Parallelograms
Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-2: Properties of Parallelograms Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
6.4 Properties of special parallelogram
Class Greeting.
Objective Prove that a given quadrilateral is a rectangle, rhombus, or square.
Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-5: Conditions for Rhombuses, Rectangles, and Squares Pearson Texas Geometry ©2016 Holt Geometry.
8.4 Properties of Rhombuses, Rectangles, and Squares
Properties of Special Parallelograms
LESSON 6–5 Rhombi and Squares.
Pearson Unit 1 Topic 3: Parallel and Perpendicular Lines 3-2: Properties of Parallel Lines Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Conditions for Special Parallelograms
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-6 Special Quadrilaterals Warm Up Lesson Presentation Lesson Quiz
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6.4 Properties of Special Parallelograms
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
LESSON 6–4 Rectangles.
Prove A ≅ F Given parallelograms ABCD and CEFG… E F B C G A D
Five-Minute Check (over Lesson 6–3) Mathematical Practices Then/Now
Go over the Test.
Presentation transcript:

Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-4: Properties of Rhombuses, Rectangles, and Squares Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007

TEKS Focus: (5)(A) Investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools. (1)(C) Select tools, including real objects, manipulatives paper and pencil, and technology as appropriate, and techniques, including mental math, estimations, and number sense as appropriate, to solve problems. (1)(F) Analyze mathematical relationships to connect and communicate mathematical ideas. (6)(E) Prove a quadrilateral is a parallelogram, rectangle, square, or rhombus using opposite sides, opposite angles, or diagonals and apply these relationships to solve problems.

A second type of special quadrilateral is a rectangle A second type of special quadrilateral is a rectangle. A rectangle is a quadrilateral with four right angles.

A rhombus is another special quadrilateral A rhombus is another special quadrilateral. A rhombus is a quadrilateral with four congruent sides.

A square is a quadrilateral with four right angles and four congruent sides. In the exercises, you will show that a square is a parallelogram, a rectangle, and a rhombus. So a square has the properties of all three.

Example: 1 Is ABCD a rhombus, rectangle or square? Explain.

Example: 2 A woodworker constructs a rectangular picture frame so that JK = 50 cm and JL = 86 cm. Find HM. Rect.  diags.  KM = JL = 86 Def. of  segs.  diags. bisect each other Substitute and simplify.

Example: 3 Carpentry: The rectangular gate has diagonal braces. Find HJ and HK. Rect.  diags.  HJ = GK = 48 Def. of  segs. Rect.  diags.  Rect.  diagonals bisect each other JL = LG Def. of  segs. JG = 2JL = 2(30.8) = 61.6 Substitute and simplify.

Example: 4 TVWX is a rhombus. Find TV. WV = XT Def. of rhombus 13b – 9 = 3b + 4 Substitute given values. Subtract 3b from both sides and add 9 to both sides. 10b = 13 b = 1.3 Divide both sides by 10. TV = XT Def. of rhombus Substitute 3b + 4 for XT. TV = 3b + 4 Substitute 1.3 for b and simplify. TV = 3(1.3) + 4 = 7.9

Example: 5 TVWX is a rhombus. Find mVTZ. mVZT = 90° Rhombus  diag.  14a + 20 = 90° Substitute 14a + 20 for mVTZ. a = 5 Subtract 20 from both sides and divide both sides by 14. mVTZ = mZTX Rhombus  each diag. bisects opp. s mVTZ = (5a – 5)° Substitute 5a – 5 for mVTZ. mVTZ = [5(5) – 5)]° = 20° Substitute 5 for a and simplify.

Example: 6 CDFG is a rhombus. Find CD. CG = GF Def. of rhombus 5a = 3a + 17 Substitute a = 8.5 Simplify GF = 3a + 17 = 42.5 Substitute CD = GF Def. of rhombus CD = 42.5 Substitute

Example: 7 CDFG is a rhombus. Find mGCH if mGCD = (b + 3)° and mCDF = (6b – 40)° mGCD + mCDF = 180° Def. of rhombus b + 3 + 6b – 40 = 180° Substitute. Simplify. 7b = 217° Divide both sides by 7. b = 31°

Example: 7 continued mGCH + mHCD = mGCD Rhombus  each diag. bisects opp. s 2mGCH = mGCD 2mGCH = (b + 3) Substitute. 2mGCH = (31 + 3) Substitute. mGCH = 17° Simplify and divide both sides by 2.

Example: 8 12 feet A carpenter’s square can be used to test that an angle is a right angle. How could the contractor use a carpenter’s square to check that the frame is a rectangle? 8 ft 8 ft 12 feet Both pairs of opp. sides of WXYZ are , so WXYZ is a parallelogram. The contractor can use the carpenter’s square to see if one  of WXYZ is a right . If one angle is a right , then by Theorem 6-5-1 the frame is a rectangle.