Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Advertisements

L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
Spring 2007EE130 Lecture 24, Slide 1 Lecture #24 HW#8 ANNOUNCEMENTS Start Problem 4 early! Note that Problem 3f has been revised OUTLINE The Bipolar Junction.
Current Components inside Bipolar Junction Transistor (BJT) NPN BJT.
Lecture #25 OUTLINE BJT: Deviations from the Ideal
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Lecture #25 OUTLINE BJT: Deviations from the Ideal
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 18
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 21 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

Linking current E-M circuit model ©rlc L21-28Mar2011

Non-ideal effects in BJTs Recombination/Generation effects Base-width modulation (FA: xB changes with changes in VBC) Current crowding in 2-dim base High-level injection (minority carriers g.t. dopant - especially in the base). Emitter Bandgap narrowing (NE ~ density of states at cond. band. edge) Junction breakdown at BC junction ©rlc L21-28Mar2011

npn Base-width mod. (Early Effect) Fig 9.15* ©rlc L21-28Mar2011

Base-width modulation (Early Effect, cont.) Fig 9.16* ©rlc L21-28Mar2011

Emitter current crowding in base Fig 9.21* ©rlc L21-28Mar2011

Interdigitated base fixes emitter crowding Fig 9.23* ©rlc L21-28Mar2011

Base region high- level injection (npn) ©rlc L21-28Mar2011

Effect of HLI in npn base region Fig 9.17* ©rlc L21-28Mar2011

Effect of HLI in npn base region (cont) ©rlc L21-28Mar2011

Effect of HLI in npn base region (cont) ©rlc L21-28Mar2011

Emitter region high- level injection (npn) ©rlc L21-28Mar2011

Effect of HLI in npn emitter region ©rlc L21-28Mar2011

Effect of HLI in npn base region Figs 9.18 and 9.19* ©rlc L21-28Mar2011

Bandgap narrowing effects Fig 9.20* Replaces ni2 throughout ©rlc L21-28Mar2011

Junction breakdown at BC junction Reach-through or punch-through when WCB and/or WEB become large enough to reduce xB to zero Avalanche breakdown when Emax at EB junction or CB junction reaches Ecrit. ©rlc L21-28Mar2011

The npn Gummel-Poon Static Model RC ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B RBB ILC IBR B’ ILE IBF RE E ©rlc L21-28Mar2011

Gummel Poon npn Model Equations IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR )  {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } ©rlc L21-28Mar2011

Making a diode from the GP BJT model C RC ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B RBB ILC IBR B’ ILE IBF RE E ©rlc L21-28Mar2011

Making a complete diode with G-P BJT RB = RC = 0 Set RE to the desired RS value Set ILE and NE to ISR and NR so this is the rec. current Set BR=BF>>1, ~1e8 so IBR, IBF are neglibigle Set ISC = 0 so ILC is = 0 Set IS to IS for diode so ICC-IEC is the injection curr. Set VAR = VAF = 0 IKF gives the desired high level injection, set IKR = 0 ©rlc L21-28Mar2011

Charge components in the BJT **From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc. ©rlc L21-28Mar2011

References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ** Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print). ©rlc L21-28Mar2011