Unit 2. Day 10..

Slides:



Advertisements
Similar presentations
Perfect Square Roots & Approximating Non-Perfect Square Roots
Advertisements

Rational Numbers and Decimals
The Real Number System. The natural numbers are the counting numbers, without _______. Whole numbers include the natural numbers and ____________. Integers.
Notes Over 5.4 Imaginary Numbers.
Equivalent Forms of Rational Numbers
A Slide Show by Mr. Mark Martin. Integer Operations Integers are all the positive and negative numbers and zero. –In set notation: {... -2, -1, 0, 1,
Lesson 9-2 Pages The Real Number System Lesson Check 9-1.
8-3 Comparing Real Numbers
Adding/Subtracting Fractions (like denominators) Adding/Subtracting Fractions (unlike denominators) Adding/Subtracting Decimals Multiplying/Dividing Fractions.
Rational and Irrational Numbers Objective: I will identify rational and irrational numbers and identify repeating and terminating decimals MAFS.8.NS.1:
Key Standards MC C8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion;
Adding & Subtracting Whole Number and Fractions
Presented by Mr. Laws 8th Grade Math JCMS
The Real Number System. Whole numbers Whole numbers Rational numbers Whole numbers Natural numbers Integers / ¾ 18% π √2√2 − ….
Integrated Mathematics Real Numbers. Rational Numbers Examples of Rational Numbers.
Math 10: Basic Mathematics 1 Important Topics from Math 10 Chapter 1 Whole Numbers Write a word name for a number Add, subtract, multiply and divide whole.
Summer Assignment Review Classifying Numbers and Solving Equations by Clearing Fractions or Decimals.
Lesson – Real Numbers MGSE8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion;
Review for Unit 2 Quiz 1. Review for U2 Quiz 1 Solve. We will check them together. I will answer questions when we check answers. Combine like terms.
4-8 Complex Numbers Today’s Objective: I can compute with complex numbers.
Imaginary & Complex Numbers. Once upon a time… -In the set of real numbers, negative numbers do not have square roots. -Imaginary numbers were invented.
Complex Number System Reals Rationals (fractions, decimals) Integers (…, -1, -2, 0, 1, 2, …) Whole (0, 1, 2, …) Natural (1, 2, …) Irrationals.
Aims: To be to be able to classify types of numbers To be able to write a surd in its simplest form To be able to add, subtract and multiply surds SURDS.
Complex Number System Reals Rationals (fractions, decimals) Integers (…, -1, -2, 0, 1, 2, …) Whole (0, 1, 2, …) Natural (1, 2, …) Irrationals.
4-6 Solving Equations with Fractions What You’ll Learn ► To solve one – step equations ► To solve two – equations.
Lesson 5.3 The rational numbers. Rational numbers – set of all numbers which can be expressed in the form a/b, where a and b are integers and b is not.
Sets of Real Numbers (0-2)
Rational Numbers Adding Like Fractions
Number Theory The Integers; Order of Operations Rational Numbers
Splash Screen.
Irrational? Why or Why Not?
First Quarter Reviewer
Adding and Subtracting Integers is like …
Unit 2. Day 4..
Math 2-1: Warm-up Evaluate each expression. 8 + (20 – 3)(2) 16 + (-9)
The Complex Number System
Unit 2. Day 1..
Estimating Irrational Numbers
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Math 3-3: Warm-up.
Domain 1: The Number System
Unit 1. Day 4..
Unit 1. Day 7..
Lesson 1 - Irrational Numbers
You have already compared fractions and decimals. (Lesson 3–1)
Lesson How do you add and subtract fractions?
Unit 2. Day 5..
Unit 2. Day 11..
One Step Rational Number Equations
Unit 2. Day 4..
Converting Repeating Decimals to Fractions
Unit 2. Day 4..
Unit 2. Day 5..
Lesson 2 MGSE8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for.
Unit 2. Day 7..
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 10..
Unit 2. Day 13..
Unit 3. Day 3..
Unit 2. Day 8..
Real Numbers Natural Numbers Whole Numbers Integers Rational Numbers
Unit 2. Day 12..
Rational Numbers Recurring Decimals.
Natural Numbers The first counting numbers Does NOT include zero
Lesson 2 MGSE8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for.
Rational and Irrational Numbers
Presentation transcript:

Unit 2. Day 10.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Irrational numbers 8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π2)

Real Number System Real Irrational π, e, 𝟐 , 𝟕 , … Imaginary Rational -3.24, 2/3, 6.71, -5/2, … Irrational Integers -1, -2, -3, -4, … π, e, 𝟐 , 𝟕 , … Whole Natural Imaginary 1, 2, 3, 4, … −𝟐 , −𝟕 , −𝟏𝟑 , …

Imaginary Real Number System 1 2 9 2 − 81 −10 −2.7 10 16 𝜋 0. 6 7 5 𝑒 Rational Irrational

We have spent the past nine lessons working with RATIONAL numbers We have spent the past nine lessons working with RATIONAL numbers. We’ve converted, compared, ordered, added, subtracted, multiplied, and divided RATIONAL numbers. But there are also IRRATIONAL numbers! We want to understand IRRATIONAL numbers.

𝑊𝑒 𝑚𝑢𝑠𝑡 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑣𝑖𝑒𝑤 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑊𝑒 𝑗𝑢𝑠𝑡 𝑡𝑎𝑙𝑘𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑖𝑠! 8.NS.A.1. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. We’ve done this 3 4 0.75000000… 0.75 2 3 We will now learn this 0.6666666666… 0.6666666666… 1.414213562… 𝑊𝑒 𝑚𝑢𝑠𝑡 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑣𝑖𝑒𝑤 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑊𝑒 𝑗𝑢𝑠𝑡 𝑡𝑎𝑙𝑘𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑖𝑠!

Solving Equations Review 6th Grade Solving Equations Review

𝑥+4 = 7 𝑥+4 = 7 𝑥 = 3 𝑥 𝑥+4 = 7 = + −4 −4 Example A: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑥. + + Check: +4=7 3 𝑥+4 = 7 𝑥+4 = 7 𝑥 = + 3 7=7 −4 −4 𝑥 𝑥+4 = 7 = + + + + + + + + + + + − − − − − − − −

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑦+2 =8 Example B*: 𝑚+4 =−1 Example C*:

𝑦 𝑦+2 =8 𝑦+2 =8 = 6 𝑦 𝑦+2 =8 = + Example B*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑦. −2 −2 + + + Check: +2=8 6 𝑦 𝑦+2 =8 𝑦+2 =8 = + 6 8=8 −2 −2 𝑦 𝑦+2 =8 = + + + + + + + + + + − − − −

𝑚 𝑚+4 =−1 𝑚+4 =−1 = −5 𝑚+4 =−1 𝑚 = + −4 −4 Example C*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑚. + Check: +4=−1 −5 𝑚 𝑚+4 =−1 𝑚+4 =−1 = + −5 −1=−1 −4 −4 𝑚+4 =−1 𝑚 = + + + + − − − − − − − − −

Example D: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 x. 1 3𝑥=15 𝑥 = 5 ∙ 3 3 Check: 3 =15 5 15=15

Example D: 𝑥+3 =15 𝑥 + = 12 1 3𝑥=15 𝑥 = 5 ∙ −3 −3 3 3

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 Example E*: 4𝑤=24 Example F*: 5𝑒=30

Example E*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 w. 1 4𝑤=24 𝑤 = 6 ∙ 4 4 Check 4 =24 6 24=24

Example F*: 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑒 . 5𝑒=30 𝑒 = 6 ∙ 5 5 Check 5 =30 6 30=30

Converting Decimals into Fractions

Example --: Write the decimal as a fraction in simplest form. 0.81 81 100 3∙3∙3∙3 2∙2∙5∙5

Example G: Write the decimal as a fraction in simplest form. 0. 81 111111111111… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 81 100

Example G: Write the decimal as a fraction in simplest form. 𝑛= 0. 81 100 100 𝑛 = 0.818181818181818181… 100𝑛 = 81.81818181818181818181… . 818181818181818181… 100𝑛 81.81818181818181818181… − − 1𝑛 0.818181818181818181… 99𝑛 81 99𝑛=81 99 99 𝑛= 81 99 = 9∙9 9∙11 9 11 =

Example H: Write the decimal as a fraction in simplest form. 𝑛= 0. 6 10 10 𝑛=0.666666666666666… 10𝑛 = 6.6666666666666666… . 666666666666666… 10𝑛 6.66666666666666666… − − 1𝑛 0.6666666666666666666… 9𝑛 6 9𝑛=6 9 9 𝑛= 6 9 = 2∙3 3∙3 2 3 =

0. 4 0. 45 Write the decimal as a fraction in simplest form. Example I*: 0. 45 Example J*:

Example I*: Write the decimal as a fraction in simplest form. 𝑛= 0. 4 10 10 𝑛=0.444444444444444444… 10𝑛 = 4.4444444444444444… . 444444444444444… 10𝑛 4.4444444444444444444… − − 1𝑛 0.4444444444444444444… 9𝑛 4 9𝑛=4 9 9 𝑛= 4 9 = 2∙2 3∙3 4 9 =

Example J*: Write the decimal as a fraction in simplest form. 𝑛= 0. 45 100 100 𝑛 = 0.454545454545454545… 100𝑛 = 45.454545454545454545… . 45454545454545454545… 100𝑛 45.454545454545454545… − − 1𝑛 0.454545454545454545… 99𝑛 45 99𝑛=45 99 99 𝑛= 45 99 = 3∙3∙5 3∙3∙11 5 11 =

Example K: Write the decimal as a fraction in simplest form. 𝑛= 0.5 3 10 10 𝑛=0.533333333333333333… 10𝑛 = 5.3333333333333333… . 53333333333333333… 4 10𝑛 5.3333333333333333333… 1 − − 1𝑛 0.5333333333333333333… 9𝑛 4 . 8 9𝑛=4.8 9 9 𝑛= 4.8 9 = 48 90 2∙2∙2∙2∙3 2∙3∙3∙5 8 15 = =

Example K: Write the decimal as a fraction in simplest form. 𝑛= 0.5 3 100 100 𝑛 = 0.533333333333333333… 100𝑛 = 53.33333333333333333… . 533333333333333333 2 100𝑛 53.333333333333333333… 1 − − 1𝑛 0.533333333333333333… 99𝑛 5 2 . 8 8 15 = 99𝑛=52.8 99 99 𝑛= 52.8 99 528 990 2∙2∙2∙2∙3∙11 2∙3∙3∙5∙11 = =

Example L: Write the decimal as a fraction in simplest form. 𝑛= 0. 1234 10000 10000 𝑛=0.1234123412341234… 10000𝑛 = 1234.123412341234… . 1234123412341234… 10000𝑛 1234.123412341234… − − 1𝑛 0.123412341234… 9999𝑛 1234 9999𝑛=1234 9999 9999 𝑛= 1234 9999

Example M: Write the decimal as a fraction in simplest form. 𝐿𝑒𝑡: 𝑛= 3.141592653589793… ? ? 𝑛=3.141592653589793…