Photochemical processes on Titan

Slides:



Advertisements
Similar presentations
Photochemistry in the Atmospheres of Hot Jupiters Yuk L. Yung 1, Mao-Chang Liang 2, Michael Line 1 and Giovanna Tinetti 3 1 Division of Geological and.
Advertisements

Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Oxygen: Stratosphere, Mesosphere and Thermosphere Part-3 Chemical Rate Equations Ozone Density vs. Altitude Stratospheric Heating Thermal Conductivity.
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
Improving the Representation of Atmospheric Chemistry in WRF William R. Stockwell Department of Chemistry Howard University.
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Atmospheric chemistry Day 1 Structure of the atmosphere Photochemistry and Chemical Kinetics.
Propane on Titan H.G. Roe 1, T. Greathouse, M. Richter, J. Lacy 1 Div. Of Geological and Planetary Sciences, CalTech Roe, H. et al. 2003, ApJ, 597, L65.
Modeling the Distribution of H 2 O and HDO in the upper atmosphere of Venus Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
CO 2 in the middle troposphere Chang-Yu Ting 1, Mao-Chang Liang 1, Xun Jiang 2, and Yuk L. Yung 3 ¤ Abstract Measurements of CO 2 in the middle troposphere.
Modeling the Distribution of H 2 O and HDO in the upper atmosphere of Venus Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica.
Using global models and chemical observations to diagnose eddy diffusion.
Modeling Carbon Species in the Atmosphere of Neptune and Comparison with Spitzer Observations Xi Zhang 1, Mao-Chang Liang 2, Daniel Feldman 1, Julianne.
A Preliminary Meteorological Interpretation of Correlated Huygens DWE and HASI Data M. Allison, F. Ferri, M.K. Bird, M. Fulchignoni, S.W. Asmar, D.H. Atkinson,
Radiative Modeling of the Atmosphere of Neptune Y. Yung 1, X. Zhang 1, R. Shia 1, M. Liang 2, G. Orton 3, A. Mainzer 3 and M. Burgdorf 4 1 Caltech, USA.
Titan in context (1) Hubble Space Telescope, 6 August 1995.
Titan’s Atmospheric Chemistry Emily Schaller GE/AY 132 March 2004.
The “Bordeaux” 1D photochemical model of Titan Michel Dobrijevic Laboratoire d’Astrophysique de Bordeaux In collaboration with Eric Hébrard, Nathalie Carrasco.
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
Titan's photochemical model: neutral species L.M. Lara IAA-CSIC Granada, Spain.
Deuterated Methane and Ethane in the Atmosphere of Jupiter Christopher D. Parkinson 1,2, Anthony Y.-T. Lee 1, Yuk L. Yung 1, and David Crisp 2 1 Division.
1 The 1D model of IPSL : IPSL05 Intercomparison of 1D photochemical models of Titan atmosphere Nathalie Carrasco Workshop ISSI Bern th march 2009.
Photochemical and aerosol pollution of the environment in the regional and global scales accounting for kinetic processes of transformation A.E.Aloyan.
Network and Systems Laboratory nslab.ee.ntu.edu.tw Te-Yuan Huang, Kuan-Ta Chen, Polly Huang Network and Systems Laboratory National Taiwan University Institute.
Photochemical Distribution of Venusian Sulphur and Halogen Species AND Why Vulcanism cannot be the source for Venusian SO 2 above 80km C. D. Parkinson.
Laboratory Mass Spectrometry Facility TNA 7 and JRA 15 Activity PI: R. Thissen (LPG, Grenoble, France) List of laboratories: - LPG (Grenoble, France) -
Chemistry of Venus’ Atmosphere Vladimir A. Krasnopolsky Photochemical model for km Photochemical model for km Chemical kinetic model for.
Response of Middle Atmospheric Hydroxyl Radical to the 27-day Solar Forcing King-Fai Li 1, Qiong Zhang 2, Shuhui Wang 3, Yuk L. Yung 2, and Stanley P.
Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations Christopher D. Parkinson 1, Yuk L. Yung 2,
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
Oxidants on Small Icy Bodies and Snowball Earth Yuk L. Yung (Caltech) Mao-Chang Liang (Academia Sinica)
The Atmosphere as a Chemical Reactor OutputsInputs Chemistry Radiation (energy) Biogeochemical Cycling.
Seasonal variability of UTLS hydrocarbons observed from ACE and comparisons with WACCM Mijeong Park, William J. Randel, Louisa K. Emmons, and Douglas E.
Summary  We have implemented numerically stable, continuous method of treating condensation on to grains in Titan’s atmosphere.  Our model can establish.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Retrievals of Dayside Emission Spectra: Trends in Chemistry Michael Line, Aaron Wolf, Xi Zhang, Yuk Yung Caltech.
Influence of Tropical Biennial Oscillation on Carbon Dioxide Jingqian Wang 1, Xun Jiang 1, Moustafa T. Chahine 2, Edward T. Olsen 2, Luke L. Chen 2, Maochang.
Response of the Earth’s environment to solar radiative forcing
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Stratospheric Circulation of Jupiter Xi Zhang 1,2 R. L. Shia 2, A. P. Showman 1, and Y. L. Yung 2 1 LPL, University of Arizona, United States 2 California.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Jovian Stratospheric Circulation: Insights from Cassini Observations X. Zhang (1), R. Cosentino (2), R. Morales-Juberias (2), R. A. West (3), S. Coffing.
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
Fifth Workshop on Titan Chemistry – Observations, Experiments, Computations, and Modeling Poipu Koloa, Kauai, Hawaii, April 11-14, 2011 Review by Yuk Yung.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Results We first best-fit the zonal wind and temperature simulated in the 3D PlanetWRF using the semi- analytic 2D model with,,, and. See Fig 2. The similarity.
An Optimal Estimation Spectral Retrieval Approach for Exoplanet Atmospheres M.R. Line 1, X. Zhang 1, V. Natraj 2, G. Vasisht 2, P. Chen 2, Y.L. Yung 1.
Night OH in the Mesosphere of Venus and Earth Christopher Parkinson Dept. Atmospheric, Oceanic, and Space Sciences University of Michigan F. Mills, M.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
Analysis of Satellite Observations to Estimate Production of Nitrogen Oxides from Lightning Randall Martin Bastien Sauvage Ian Folkins Chris Sioris Chris.
Modeling of heat and mass transfer during gas adsorption by aerosol particles in air pollution plumes T. Elperin1, A. Fominykh1, I. Katra2, and B. Krasovitov1.
Yuqiang Zhang1, Owen R, Cooper2,3, J. Jason West1
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
UVIS Saturn Atmosphere Occultation Prospectus
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
Highlights and open questions on Titan’s atmospheric chemistry
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Enceladus Plume Simulations
UVIS Saturn EUVFUV Data Analysis
SATELLITE OBSERVATIONS OF OZONE PRECURSORS FROM GOME
Revised tholin profile for the atmosphere of Titan
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Goals for CSM R. West.
Presentation transcript:

Photochemical processes on Titan A Revision from Cassini Observations Cheng Li1, X. Zhang1, J. A. Kammer1, M. C. Liang2, Y. L. Yung1 1California Institute of Technology 2Research Center for Environmental Changes, Academia Sinica, Taiwan

Photochemistry on Titan C2H2, C2H4,C2H6 C2H,C2H3,… N2+,N,N+ C3Hx, C4Hx,… CH,1CH2,3CH2 CH3 e- CH4 N2 surface

The simplest 1D photochemical model Chemical production Chemical loss Vertical transport 𝑃 − 𝐿 = − 𝜕 𝜕𝑧 (𝐾𝑛 𝜕𝑥 𝜕𝑧 ) Mixing ratio Number density Eddy diffusivity

CIRS limb view and FUV stellar occultation C2H2 C2H4 C2H6 Altitude (km) CH4 CH3CCH C3H8 C4H2 C6H6 Mixing ratio Vinatier et al., 2009; Kammer et al., 2011

Retrieval algorithm Levenberg–Marquardt Ar C2H2 1000 altitude Mixing ratio Levenberg–Marquardt

Molecular diffusivity Initial guess Retrieved eddy diffusivity

Altitude (km) Mixing ratio Vinatier et al., 2009; Kammer et al., 2011; Yelle et al., 2008 model 1 model 2 Altitude (km) CH4 C2H2 C2H4 C2H6 CH3CCH C3H8 C6H6 C4H2 Mixing ratio

Haze formation process revealed by the eddy diffusivity Liang et al., 2007 Stabilization due to haze heating Aerosol growth heating Detached haze layer

Conclusion Retrieved eddy diffusivity

How to estimate the sensitivity to chemical rate constants? 𝑆= 𝑖,𝑗 Δ 𝑥 𝑖 𝑥 𝑖 2 𝑖:𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑗:𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑥 𝑖 :𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 Δ 𝑥 𝑖 :𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑤ℎ𝑒𝑛 𝑟𝑎𝑡𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑢𝑏𝑙𝑒

Mixing tracer S

Reactions Rate constants Moses et al 2000 This work H + C2H4 + M  C2H5 + M 𝑘 0 =1.3× 10 −29 𝑒 − 380 𝑇 𝑘 ∞ =6.6× 10 −15 𝑇 1.3 𝑒 − 650 𝑇 𝑘 0 =5.4× 10 −25 𝑇 −1.46 𝑒 − 1300 𝑇 𝑘 ∞ =1.8× 10 −13 𝑇 0.7 𝑒 − 600 𝑇 CH3 + C2H5 + M  C3H8 + M 𝑘 0 =7.5× 10 −17 𝑇 −3 𝑒 − 300 𝑇 𝑘 ∞ =6.64× 10 −11 Increase by 5 times CH3 + C2H3 + M  C3H6 + M 𝑘 0 =5× 10 −27 𝑘 ∞ =1.1× 10 −11 H + C3H7 + M  C3H8 + M 𝑘 0 =4× 10 −19 𝑇 −3 𝑒 − 600 𝑇 𝑘 ∞ =2.49× 10 −10

How to estimate the eddy diffusivity? Molecular diffusivity adiabats 𝐾∝ 1 𝑛 Fulchignoni et al., 2005

Eddy diffusivity 𝑃−𝐿=− 𝜕 𝜕𝑧 (𝐾𝑛 𝜕𝑥 𝜕𝑧 ) Altitude(km) adiabats Altitude(km) Eddy diffusivity (cm2/s)

Previous work -- mixing ratio v.s. altitude(km) Lavvas et al, 07 Krasnopolsky, 09

Fractional change of C2H4 by doubling rate constants CH3  1CH2+H 2CH3 + M  C2H6 + M Altitude (km) H + C2H2 + M  C2H3 + M H + C2H4 + M  C2H5 +M

New reaction rate constants (solid lines) H + C2H4 + M  C2H5 + M 604K / 511K / 400K / 285K / 170K (Titan) Moses et al.,2000 This work Lightfoot et al., 1987