electron configurations nuclear charge

Slides:



Advertisements
Similar presentations
Periodic Properties of the Elements
Advertisements

Esther Jun, Claire Lee, and Eunhye Oak
Quiz Grades Rewrite your answer to question 1 on the back of your quiz. If it is correct, I will add up to 20% to your quiz grade (maximum score: 100%).
Periodic Trends and Energy
 Largest is Na  Smallest is S  B, the atomic radius increases when going down a group, so He is the smallest and radon is the biggest. A B C.
Periodic Properties electron configurations properties hydrogen atom1 electron to remove e - n f = ∞  E = x x atoms atommol = 1311 kJ mol.
Periodic Trends.
Periodic Properties of Elements Chapter 7 part I.
Chem 11. Ionization Energy The amount of energy required to completely remove an electron from a gaseous atom. Removing one electron makes a +1 ion.
Periodic Properties electron configurations properties hydrogen atom1 electron to remove e - n f = ∞  E = x x atoms atommol = 1311 kJ mol.
Periodic Relationships Among the Elements
The Periodic Table and Ionic Bonding: Part 4-Periodic Table Trends 1.
Periodic Trends. Atomic Size u First problem where do you start measuring. u The electron cloud doesn’t have a definite edge. u They get around this by.
The Periodic Table.
The Periodic Table The how and why.
Periodic Relationships Among the Elements

Suggested Reading Pages Section 5-3
Periodic Properties of the Elements
Periodic properties of the elements
Periodic Relationships Among the Elements
5.2 – NOTES Organizing the Periodic Table
Periodic Relationships Among the Elements
Write the Complete Electron Configuration for:
Chapter 8 Periodic Relationships Among the Elements
Chemical Periodicity? What?
Examination of properties reveals why
Periodic Relationships Among the Elements
The Periodic Table Periodic Trends.
Periodic Trends Section 6.3.
Periodic trends.
Periodic Trends of the Elements
Unit 1: Structure of Matter
The Periodic Table Chapter 8
Periodic Tables Review
Section 6.3 Practice & Assessment Problems pgs
7.1 Development of The Periodic Table
Chapter 8 Periodic Relationships Among the Elements
Trends In The Periodic Table
Example: Se Se. Example: Se Se 1s22s22p63s23p64s23d104p4 = [Ar] 4s23d104p4 Example: Se Se.
5.3 Electron Configuration & Periodic Properties
Exploring Periodic Trends
Chapter Four Periodic Trends of the Elements
Chapter 8 The Periodic Table: Structure and Trends
Periodic Trends OBJECTIVES:
Periodic Trends Section 6.3.
2.3 Periodic trends.
Trends in the Periodic Table… …revisited!
Identifying the patterns
Atomic Size First problem where do you start measuring.
Periodic Properties of the Elements
Ionization Energy Atomic Radius Electron Affinity Electronegativity
Electronegativity and Ionic Radius
Periodic Trends Section 6.3.
Ch. 4 - The Periodic Table III. Periodic Trends.
Many-Electron Atoms We have to examine the balance of attractions and repulsions in the atom to explain why subshells of a given shell have different energies.
III. Periodic Trends (p )
III. Periodic Trends (p )
Periodic Trends College Chemistry.
The Periodic Table III. Periodic Trends.
Periodicity.
TRENDS IN THE PERIODIC TABLE.
Section 3 Trends and the Periodic Table
Periodic Trends.
III. Periodic Trends (p )
AP Chemistry Lesson 1.3 Periodic Properties J. Venables
III. Periodic Trends (p )
5.3 Electron Configuration & Periodic Properties
Periodic Table Trends.
Periodic Trends.
Presentation transcript:

electron configurations nuclear charge Periodic Properties properties electron configurations nuclear charge hydrogen atom 1 electron 1s1 Z = 1 1 1 to remove e- nf = ∞ E = - RH Z2 - nf2 ni2 from ground state ni = 1 E = 2.178 x 10-18 J x 6.022 x 1023 atoms = 1311 kJ atom mol mol Ionization Energy, I

systems with more than 1 electron Z = +1 E = 1311 kJ/mol He+ 1s1 Z = +2 E = 5250 kJ/mol - - + 2+ 1 1 = 5250 kJ/mol E = - RH Z2 - nf2 ni2 higher nuclear charge lowers orbital energy stabilizes system systems with more than 1 electron studied experimentally ionization reactions

Effect of 2 electrons in same orbital 1. Effect of 2 electrons in same orbital He+ 1s1 E = 5250 kJ/mol He 1s2 E = 2372 kJ/mol Z = +2 same nuclear charge orbital energy higher - 2+ - e- e- repulsion 2+ - less stable easier to remove e-

Effect of electrons in different orbital 2. Effect of electrons in different orbital Li ground state 1s2 2s1 E = 520 kJ/mol Li2+ excited state 2s1 E = 2954 kJ/mol Z = +3 same nuclear charge 2s 2s 1s 1s - - - 3+ 3+ - Zeff < Z inner electrons shielding charge

Effect of orbital shape 3. Effect of orbital shape Li ground state 1s2 2s1 E = 520 kJ/mol Li excited state 1s2 2p1 E = 341 kJ/mol Z = +3 same nuclear charge 2s 2p 1s 1s - - - - 3+ 3+ - - s orbitals penetrating lower energy

Electrostatic interactions determine orbital energies 1. Greater nuclear charge (Z) lowers energy electrons more difficult to remove 2. Electron-electron repulsion raise energy electrons easier to remove electrons shield Z inner electrons shield better 3. Orbitals with more penetration lower energy electrons more difficult to remove s < p < d < f

Ionization Energy energy required to remove an e- from gas phase atoms X (g)  X+(g) + e- first ionization energy I1 X+ (g)  X2+(g) + e- second ionization energy I2 lowest I1 Cs n = 6 highest I1 He n = 1

I1 increase Z increases shielding stays same adding valence e- core e- unchanged I1 decrease Zeff decreases more shielding e- core e-

2p 2p - - 2s 2s 1s 1s - - - - - - - 5+ 10+ - - - - - - B Ne

2p - 2s 2s 1s 1s - - - - - 4+ 5+ - - - B Be N O e- e- repulsion

Second Ionization Energy Na 495 4560 Mg 735 1445 7730 Al 580 1815 11,600 Si 780 1575 16,100 P 1060 1890 21,200 S 1005 2260 27,000 very difficult to remove Cl 1255 2295 core electrons Ar 1527 2665

Atomic Radius metallic radius Al 143 pm Cl 100 pm covalent radius C-Cl 177 pm Cl 100 pm 77 pm C

Atomic Radius increase in size n dominates decrease in size Zeff dominates

Ionic sizes isoelectronic series same # electrons 46 e- + isoelectronic series same # electrons 46 e- +49 +50 +51 ions get smaller