Acetaldehyde: Into the Submillimeter

Slides:



Advertisements
Similar presentations
+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
Advertisements

A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
Submillimeter-wave and far-infrared spectroscopy of high-J transitions of ammonia S. Yu, J.C. Pearson, B.J. Drouin and K. Sung Jet Propulsion Laboratory,
Toward a global model of low-lying vibrational states of methyl cyanide, CH 3 CN: the v 4 = 1 state at 920 cm –1 and its interactions with nearby states.
The Submillimeter Absorption Spectrum of Glycolaldehyde from 500 GHz to 1THz Brandon Carroll 1 Brian Drouin 2 Susanna Widicus Weaver 1 June 22,
June 23rdJPL Spectral Line Catalog Brian J. Drouin, Herbert M. Pickett.
VI-4 JPL Catalog Upgrades: New Tools, New Formats and New Interfaces BRIAN J. DROUIN, SHANSHAN YU, JOHN C. PEARSON, Jet Propulsion Laboratory, California.
WH04 NUMERICAL AND EXPERIMENTAL ASPECTS OF DATA ACQUISITION AND PROCESSING IN APPLICATION TO TEMPERATURE RESOLVED 3-D SUB-MILLIMETER SPECTROSCOPY FOR ASTROPHYSICS.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Molecular Spectroscopy Symposium June 2009 The Submillimeter Spectrum of the Ground Torsional State of CH 2 DOH J.C. PEARSON, C.S. BRAUER, S.
The ground state rotational spectrum of methanol Rogier Braakman Chemistry & Chemical Engineering California Institute of Technology John C. Pearson Brian.
National Aeronautics and Space Administration RECENT CHANGES IN THE SPFIT PROGRAM SET H. M. Pickett Jet Propulsion Laboratory, California Institute of.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Molecular Spectroscopy Symposium June 2013 Modeling the Spectrum of the 2 2 and 4 States of Ammonia to Experimental Accuracy John C. Pearson.
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
LOW TEMPERATURE LINESHAPE OF HYDROGEN DEUTERIDE TF14 BRIAN J. DROUIN, HARSHAL GUPTA, JOHN C. PEARSON, Jet Propulsion Laboratory, California Institute of.
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
Copyright All rights reserved. June 25, 2015ISMS, 2015
Copyright All rights reserved.. Introduction to the hydronium ion (H 3 O + )  H 3 O + has a pyramidal structure and is iso-electronic to ammonia.
A NEW PROGRAM FOR NON- EQUIVALENT TWO-TOP INTERNAL ROTORS WITH A C s FRAME Isabelle KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.
RF11 THE JPL MILLIMETER AND SUBMILLIMETER SPECTRAL LINE CATALOG BRIAN J. DROUIN, SHANSHAN YU, JOHN C. PEARSON, Jet Propulsion Laboratory, California Institute.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
THz Spectroscopy of 1d-ethane: Assignment of v 18 ADAM M. DALY, BRIAN J. DROUIN, LINDA BROWN Jet Propulsion Laboratory, California Institute of Technology,
José Luis Doménech, RD08 70th International Symposium on Molecular Spectroscopy Urbana Champaign, June 22-26,2015 NEW ACCURATE WAVENUMBERS OF H 35 Cl +
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
22 June st International Symposium on Molecular SpectroscopyPetkie – RE07-p1 The Rotational Spectrum of H 15 NO 3 : All States Below 1000 cm -1.
Additional Measurements and Analyses of H 2 17 O and H 2 18 O June 22-25, 2015 ISMS John. C. Pearson, Shanshan Yu, Adam Daly Jet Propulsion Laboratory,
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
Global Modelling of the First Three Torsional States of Methanol ( v t = 0, 1, 2, J max = 30): (CH 3 OH & CH 3 18 OH) Jonathan Fisher, Gregory Paciga,
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
MICROWAVE OBSERVATION OF THE O2-CONTAINING COMPLEX, O2-HCl
ALDO J. APPONI, JAMES J. HOY and LUCY M. ZIURYS
Microwave and infrared spectra of urethane
The microwave spectroscopy of ground state CD3SH
NEW MICROWAVE SPECTRUM AND GLOBAL FIT OF METHYL ACETATE GROUND STATE
Isabelle Kleinera and Jon T. Hougenb
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
The CP-FTMW Spectrum of Bromoperfluoroacetone
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
Isabelle Kleinera and Jon T. Hougenb
NH3 measurements in the far-IR
Remeasurement* of the Microwave Spectrum of
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
The n17 band of C2H5D from cm-1
Vibrational energies for acrylonitrile from
A. Jabri, I. Kleiner, L. Margulès, R. Motyenko, J-C. Guillemin, E. A
62nd OSU International Symposium on Molecular Spectroscopy WG10
Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: low-lying states v8  2 of methyl.
Terahertz spectroscopy of the ground state of methylamine (CH3NH2)
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
Methylindoles – Microwave Spectroscopy
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Holger S. P. Müller, J. C. Pearson, S. Brünken, S. Yu,
Presentation transcript:

Acetaldehyde: Into the Submillimeter Brian J. Drouin, Herbert M. Pickett California Institute of Technology, Jet Propulsion Laboratory Pasadena, CA 91109-8099

Outline Motivation Previous Work New Data Current Fit Future Plans

Motivation Astronomy Spectroscopy Chemistry Highly abundant in ISM Bright and messy (weed or flower?) Spectroscopy Strong theoretical background Test case for low-barrier fitting routines Improve IAMCALC/SPFIT Chemistry Look for geminol?

Previous Work A. Bauder, F. J. Lovas, and D. R. Johnson, 1976, J. Phys. Chem. Ref. Data, 5, 53. (vT = 0) I. Kleiner, M. Godefroid, M. Herman, and A. R. W. McKellar, J. Mol. Spectrosc. 142, 238, 253 (1990) (vT = 1  0) I. Kleiner, J. T. Hougen, R. D. Suenram, F. J. Lovas, and M. Godefroid, J. Mol. Spectrosc. 148, 38-49 (1991). (vT = 0, FT fix) I. Kleiner, J. T. Hougen, R. D. Suenram, F. J. Lovas, and M. Godefroid, J. Mol. Spectrosc. 153, 578-586 (1992). (vT = 0,1 global) W. L. Barclay, Jr., M. A. Anderson, L. M. Ziurys, I. Kleiner, and J. T. Hougen, Astrophys. J. Suppl. 89, 221-226 (1993). (vT = 0,1;< 325 GHz)  S. P. Belov, M. Yu. Tretyakov, I. Kleiner, and J. T. Hougen, J. Mol. Spectrosc. 160, 61-72 (1993). (vT = 2)

The back-story Original MW was ugly FIR spectrum FTMW Typical for an asymmetric internal rotor though Barrier and structure good FIR spectrum Minimal assignments due to congestion Assignments inconsistent with MW FTMW New assignments – global fit possible

SPFIT Then and Now Then JPL catalog entry 1980 A. Bauder, F. J. Lovas, and D. R. Johnson, 1976, J. Phys. Chem. Ref. Data, 5, 53. A state - Asymmetric top rigid rotor E State - Pa, PaP2, PaP4, Pa3, Pa3P2, and Pa5 terms. The fit produced observed--calculated frequencies that were 3.5 times the experimental uncertainties in an RMS sense. Now Internal Axis Method ‘front end’ IAMCALC Set up A and E states for 3,6,9… “vibrational states” to form torsional basis Generate Fourier terms from Mathieu function – big ‘par’ file Run SPFIT/SPCAT as usual Iterate through IAMCALC as necessary Start with Kleiner’s vT = 0,1,2 assignments – verify and improve with new data

Theory Phenomenological periodic solutions to Mathieu Equation for one ‘vibration’ ‘Global’ analyses using torsional basis set

The “IAM” file Define r, n, Max M, Max v = 3*max vT Max series Flags: 0.3286316 3 66 -21 -26 99 3 0 12225059 / V3 99 6 0 -375172 / V6 99 0 2 228707 / F 99 3 2 1911 /-2*k7 -99 0 2 -1911 /-2*k7 200099 0 1 1.281 /-2*F*rho 200199 0 1 -0.22349 / Lv 201099 0 1 3.8284 / k1 220099 0 1 -0.06176 / c4 401099 0 1 -1.5757 / del_ab 200299 0 1 -3.487E-06 / lv 201199 0 1 0.05585E-03 / lamv 202099 0 1 -0.4385E-03 / lk 220199 0 1 0.138E-06 / c4J 221099 0 1 0.03389E-03 / c10 200099 0 3 8.0973 / k3 200199 0 3 -2.5E-06 / k3J 201099 0 3 -3.117E-03 / k3K 220099 0 3 -0.1960E-03 / c12 401099 0 3 0.571E-03 /del_ab3 200099 0 5 -0.01312 / ?? 1099 0 0 46735.4155 / A-(B+C)/2 199 0 0 9771.0219 / (B+C)/2 40099 0 0 341.25074 / (B-C)/4 610099 0 0 -3678.766 / Dab 199 3 0 -17.1563 / -Fv -199 0 0 17.1563 / -Fv 1099 3 0 578.294 /-k5 -1099 0 0 -578.294 /-k5 40099 3 0 -3.10243 /-c2/2 -40099 0 0 3.10243 /-c2/2 610099 3 0 -62.8780 /-dab -610099 0 0 62.8780 /-dab 1099 6 0 8.945 /-K2 -1099 0 0 -8.945 /-K2 299 0 0 -9.52171E-03 /-DJ 1199 0 0 0.03659 /-DJK 2099 0 0 -0.69782 /-DK 299 3 0 0.22250E-03 /-fv -299 0 0 -0.22250E-03 /-fv 1199 3 0 -0.254E-03 /-k5J -1199 0 0 0.254E-03 /-k5J 2099 3 0 -0.03797 /-fk -2099 0 0 0.03797 /-fk 40199 0 0 -2.19782E-03 /-dJ 41099 0 0 -0.02213 /-dK 610199 0 0 0.024294 / DabJ 611099 0 0 0.11337 / DabK 610299 0 0 0.2069E-06 / DabJJ 611199 0 0 7.55E-06 / DabJK 612099 0 0 0.04130E-03 / DabKK 399 0 0 1.224E-09 / HJ 1299 0 0 -1.324E-06 / HJK 2199 0 0 -0.02124E-03 / HKJ 3099 0 0 0.06889E-03 / HK 41199 0 0 -0.732E-06 / hJK 42099 0 0 -2.48E-06 / hK 99 0 6 0.02374 /k6? 99 0 4 -13.8868 / k4 199 0 4 0.0377E-03 / Mv 40099 0 4 -0.0549E-03 / c3 199 0 2 -0.08941 / Gv 1099 0 2 -12.9636 / k2 40099 0 2 -0.04620 / c1 610099 0 2 1.2011 / Del_ab 299 0 2 -1.304E-06 / gv 1199 0 2 -0.0114E-03 / k2J 2099 0 2 1.657E-03 / k2K 40199 0 2 -1.380E-06 / c1J 41099 0 2 0.1451E-03 /c3c 410099 -3 0 57.64 / Dac 40199 3 0 0.04473E-03 / c6 -40199 0 0 -0.04473E-03 / c6 41099 3 0 -0.578E-03 / c9 -41099 0 0 0.578E-03 / c9 200199 3 1 0.0991 / k6J 199 3 2 0.2543 / k7J or Ov 201099 3 1 -0.335 / K4 40099 6 0 -0.03055 / c11 610099 6 0 1.484 /ddab 220099 3 1 3.11E-03 / c22 1099 0 4 -5.036E-03 / ?? 401099 3 1 0.1923 / ddel_ab / 1 0 0 2.42340E+00 /mu_a / 2 0 0 -1.26580E+00 /mu_b Define r, n, Max M, Max v = 3*max vT Max series Flags: Choose type of series ++Fourier - integer K Parameters: Commutators and ½ anticommutators

New Data 499 GHz 500 GHz 490 GHz 500 GHz 430 GHz 500 GHz

New Data 570 GHz 625 GHz

New Data 770 GHz 850 GHz

New Data 850 GHz 930 GHz

New Data g.s. rQ11 (simulation shifted 0.5 MHz from prediction based on current fit) 1075.5 GHz 1076 GHz

New Data g.s. rQ12 E A 1167 GHz 1170 GHz

Current Fit >3800 transitions (1200 previous from < 339 GHz) Removed FIR (for now) and low res MW Current fit is reduced rms 1.2 0.00035 cm-1 FIR, 120 kHz MW < 608 GHz assigned J < 51, K < 21 1517 loops

Current Fit One iteration is 130 Seconds for 1.6 GHz system . rQ12 Assignments straightforward, fringe assignments are 300 kHz residuals Slowly improve parameters and close loops

Future Plans Assign vT < 3 data through 1200 GHz Achieve high quality analysis Publish and update catalog

Acknowledgements NASA - Astrophysics R&A Herschel Lab Support Kleiner code as verification for Hamiltonian

Multiplier Data & Collaborations * manuscript submitted/accepted