MOMENT OF A COUPLE Today’s Objectives: Students will be able to

Slides:



Advertisements
Similar presentations
KULIAH IV MEKANIKA TEKNIK MOMEN GAYA & KOPEL
Advertisements

MOMENT OF A COUPLE (Section 4.6)
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland ENGI.
MOMENT OF A FORCE (Section 4.1)
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
4.6 Moment due to Force Couples
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
ENGR 3340: Fundamentals of Statics and Dynamics Fundamentals of Statics and Dynamics - ENGR 3340 Professor: Dr. Omar E. Meza Castillo
QUIZ #2 If cable CB is subjected to a tension that is twice that of cable CA, determine the angle Θ for equilibrium of the 10-kg cylinder. Also, what are.
Students will be able to: a) understand and define moment, and,
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS In-Class Activities : Check Homework.
MOMENT OF A COUPLE In-Class activities: Check Homework Reading Quiz Applications Moment of a Couple Concept Quiz Group Problem Solving Attention Quiz Today’s.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class activities: Check Homework Reading Quiz.
MOMENT OF A FORCE (Section 4.1) Today’s Objectives : Students will be able to: a) understand and define moment, and, b) determine moments of a force in.
MOMENT ABOUT AN AXIS Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector.
Chapter 4 Force System Resultant. The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque). 4.1.
RIGID BODY EQUILIBRIUM IN 3-D
Students will be able to: Determine the effect of moving a force.
Forces and Moments Mo = F x d What is a moment?
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS Objectives : a) understand and define.
DOT PRODUCT Today’s Objective:
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
SUB:-MOS ( ) Guided By:- Prof. Megha Patel.
4.7 AN EQUIVALENT SYSTEM Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
Today’s Objective: Students will be able to:
Today’s Objective: Students will be able to:
MOMENT ABOUT AN AXIS (Section 4.5)
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT ABOUT AN AXIS (Section 4.5)
MOMENT ABOUT AN AXIS Today’s Objectives:
Moments of the forces Mo = F x d A moment is a turning force.
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
ENGR-1100 Introduction to Engineering Analysis
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Copyright © 2010 Pearson Education South Asia Pte Ltd
THREE-DIMENSIONAL FORCE SYSTEMS
MOMENT ABOUT AN AXIS Today’s Objectives:
MOMENT ABOUT AN AXIS Today’s Objectives:
DOT PRODUCT Today’s Objective:
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today’s Objectives : Students will be.
Statics Course Code: CIVL211 Dr. Aeid A. Abdulrazeg
Today’s Objective: Students will be able to:
Today’s Objective: Students will be able to:
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
Today’s Objective: Students will be able to:
Students will be able to:
Students will be able to a) define a couple, and,
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
MOMENT OF A FORCE (SCALAR FORMULATION), CROSS PRODUCT, MOMENT OF A FORCE (VECTOR FORMULATION), & PRINCIPLE OF MOMENTS Today’s Objectives : Students will.
Students will be able to:
Students will be able to: a) understand and define moment, and,
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
MOMENT OF A FORCE (Section 4.1)
CE Statics Lecture 13.
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
Presentation transcript:

MOMENT OF A COUPLE Today’s Objectives: Students will be able to a) define a couple, and, b) determine the moment of a couple. In-Class activities: Check Homework Reading Quiz Applications Moment of a Couple Concept Quiz Group Problem Solving Attention Quiz Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

APPLICATIONS A torque or moment of 12 N · m is required to rotate the wheel. Which one of the two grips of the wheel above will require less force to rotate the wheel? Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

APPLICATIONS (continued) The crossbar lug wrench is being used to loosen a lug net. What is the effect of changing dimensions a, b, or c on the force that must be applied? Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

The moment of a couple is defined as A couple is defined as two parallel forces with the same magnitude but opposite in direction separated by a perpendicular distance d. The moment of a couple is defined as MO = F d (using a scalar analysis) or as MO = r  F (using a vector analysis). Here r is any position vector from the line of action of –F to the line of action of F. Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

MOMENT OF A COUPLE (continued) The net external effect of a couple is that the net force equals zero and the magnitude of the net moment equals F d Since the moment of a couple depends only on the distance between the forces, the moment of a couple is a free vector. It can be moved anywhere on the body and have the same external effect on the body. Moments due to couples can be added using the same rules as adding any vectors. Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

EXAMPLE - SCALAR APPROACH Given: Two couples act on the beam and d equals 8 ft. Find: The resultant couple Plan: 1) Resolve the forces in x and y directions so they can be treated as couples. 2) Determine the net moment due to the two couples. Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

EXAMPLE - SCALAR APPROACH The x and y components of the top 60 lb force are: (4/5)(60 lb) = 48 lb vertically up (3/5)(60 lb) = 36 lb to the left Similarly for the top 40 lb force: (40 lb) (sin 30°) up (40 lb) (cos 30°) to the left The net moment equals to + M = -(48 lb)(4 ft) + (40 lb)(cos 30º)(8ft) = -192.0 + 277.1 = 85.1 ft·lb Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

EXAMPLE – VECTOR APPROACH Given: A force couple acting on the rod. Find: The couple moment acting on the rod in Cartesian vector notation. A B Plan: 1) Use M = r  F to find the couple moment. 2) Set r = rAB and F = {14 i – 8 j – 6 k} N . 3) Calculate the cross product to find M. Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

EXAMPLE – VECTOR APPROACH B rAB = {0.8 i + 1.5 j – 1 k} m F = {14 i – 8 j – 6 k} N M = rAB  F = i j k N·m 0.8 1.5 -1 14 -8 -6 = {i (-9 – (8)) – j (- 4.8 – (-14)) + k (-6.4 – 21)} N·m = {-17 i – 9.2 j – 27.4 k} N·m Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6

GROUP PROBLEM SOLVING Statics: The Next Generation (2nd Ed.) Mehta, Daniielson, & Berg Lecture Notes for Section 4.6