Indirect Rotational Spectroscopy of HCO+

Slides:



Advertisements
Similar presentations
Brian Siller, Andrew Mills & Benjamin McCall University of Illinois at Urbana-Champaign.
Advertisements

Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
MID-IR SATURATION SPECTROSCOPY OF HeH + MOLECULAR ION HSUAN-CHEN CHEN,CHUNG-YUN HSIAO Institute of Photonics Technologies, National Tsing Hua University,
High-J rotational lines of HCO + and its isotopologues measured by using Evenson-type tunable FIR spectrometer R. Oishi, T. Miyamoto, M. Suzuki, Y. Moriwaki,
Towards High Resolution Cavity Enhanced Spectroscopy with Fast ion Beams Andrew Mills, Brian Siller, Manori Perera, Holger Kreckel, Ben McCall.
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
DETECTION OF THE AMMONIUM ION IN SPACE SUPPORTED BY AN IMPROVED DETERMINATION OF THE 1 0 − 0 0 ROTATIONAL FREQUENCY FROM THE 4 BAND OF NH 3 D + J. L. DOMÉNECH,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
High-Precision Sub-Doppler Infrared Spectroscopy of HeH + Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul A. Jenkins II, and.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
PROGRESS & RESULTS IN THE DEVELOPMENTS OF THE SENSITIVE, COOLED, RESOLVED ION BEAM SPECTROMETER (SCRIBES) Andrew Mills, Brian Siller, Michael Porambo,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
The Infrared Spectrum of CH 5 + Revisited Kyle N. Crabtree, James N. Hodges, and Benjamin J. McCall.
Copyright All rights reserved. June 25, 2015ISMS, 2015
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 [10 0 1,02 0 1] I ← Band Near 2.7 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
The Influence of Free-Running FP- QCL Frequency Jitter on Cavity Ringdown Spectroscopy of C 60 Brian E. Brumfield* Jacob T. Stewart* Matt D. Escarra**
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
High-Resolution Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer Gottfried and Takeshi Oka University of Chicago Benjamin J.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
Brian Siller, Michael Porambo & Benjamin McCall Chemistry Department University of Illinois at Urbana-Champaign.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Sub-Doppler Spectroscopy of H 3 + James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall.
June 18, 2008The University of Illinois 1 Continuous-wave Cavity Ringdown Study of the First Positive Band System of N 2 * Brett A. McGuire Susanna L.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
High Precision Spectroscopy of CH 5 + with NICE-OHVMS James N. Hodges, Adam J. Perry and Benjamin J. McCall.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Frequency Measurement of the Terahertz Rotational Lines of H 13 CO + and D 13 CO + Mari Suzuki a, Ryo Oishi a, Fusakazu Matsushima a, Yoshiki Moriwaki.
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
Multiplexed saturation spectroscopy with electro-optic frequency combs
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Jacob T. Stewart and Bradley M
69th. International Symposium on Molecular Spectroscopy
Group Velocity and Ultrafast Optics
An Analysis of the Rotation Spectrum of Acetonitrile (CH3CN) in Excited Vibrational States Christopher F. Neese, James McMillian, Sarah Fortman, Frank.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
Charles R. Markus, Adam J. Perry, James N. Hodges, Benjamin J. McCall
High resolution rovibrational spectroscopy of large molecules using infrared frequency combs and buffer gas cooling Bryan Changala1, Ben Spaun1, David.
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Fourier Transform Infrared Spectral
Calculations and first quantitative laboratory measurements of O2 A-band electric quadrupole line intensities and positions 16O2 b(1) ← X (1) PQ(11) magnetic.
Presentation transcript:

Indirect Rotational Spectroscopy of HCO+ Adam J. Perry, James N. Hodges, Brian M. Siller, and Benjamin J. McCall 68th International Symposium on Molecular Spectroscopy The Ohio State University 19 June 2013

Overview Motivations Experimental Technique Indirect Rotational Spectroscopy Conclusions

Motivations General technique for acquiring rotational spectra of molecular ions Technology more developed in mid-IR Support observations by new telescopes/arrays ALMA SOFIA Herschel Testing out this technique on HCO+ 3-400 µm 0.3-1600 µm 60-670 µm

HCO+ Background First observed via telescope in 1970 by Buhl and Snydera,b Known as “X-ogen” until future confirmation of identity First ion studied by Velocity Modulation Spectroscopy (Gudeman et al.)c a Buhl, D.; Snyder, L. E. “Unidentified Interstellar Microwave Line” Nat. 1970, 228, 267–269 b Klemperer, W. Carrier of the Interstellar 89.190 GHz Line. Nat. 1970, 227, 1230–1230 c Gudeman, C. S.; Begemann, M. H.; Pfaff, J.; Saykally, R. J. “Velocity-Modulated Infrared Laser Spectroscopy of Molecular Ions: The ν1 Band of HCO+” Phys. Rev. Lett. 1983, 50, 727–731

Optical Heterodyne Velocity Modulation Spectroscopy (OHVMS) 35 kHz Plasma Modulation ni = np - ns OPO I P S Frequency Comb AOM Wave-meter EOM Lock-In Amplifier Lock-In Amplifier ν 80 MHz f = 35 kHz YDFL X & Y Channels X & Y Channels 90o Phase Shift B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

HCO+ Production Plasma Conditions: 30 mTorr CO 500 mTorr H2 35 kHz , 140 mA discharge Trot ~ 166 K

Frequency Calibration MenloSystems FC1500 100 MHz repetition rate Used to measure pump and signal beam frequencies Idler frequency is then calculated νidler= νpump- νsignal

Comb Scanning Frequency AOM Rep. rate tuned so that signal beat lies within bandpass filter on frequency counter Comb Modes Frequency correction applied by AOM keeps signal beat within the bandpass Pump offset locked (~20 MHz) to nearest comb mode Bandpass regions (on frequency counter) Frequency

Comb-Calibrated OHVMS Scan P(5) line of ν1 fundamental band of HCO+ S/N ~300 (~100 for weakest lines) Lines fit to 2nd derivative of Gaussian function 4-7 scans for each line Average linecenter statistical uncertainty ~600 kHz B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

Comb-Calibrated Rovibrational Transitions Improved precision by nearly two orders of magnitude d B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press). e T. Amano, “The ν1 Fundamental Band of HCO+ by Difference Frequency Laser Spectroscopy” J. Chem. Phys. 1983, 79, 3595.

Fitting the Spectroscopic Data Rovibrational transitions fit to simple linear molecule Hamiltonian: Included terms up to sextic distortion Upper and lower state sextic constants constrained to be equal Total RMS error ~1.7 MHz B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

Indirect Rotational Spectroscopy J’ 4 IR Transitions Even Combination differences Odd Combination Differences Known Rotational Transition Reconstructed Rotational Transitions 3 cm-1 v = 1 2 1 6 5 cm-1 v = 0 4 3 2 1 J”

Indirect Ground State Rotational Transitions J' J'' Present Work (MHz) Direct Meas. (MHz)f Present-Direct (MHz) 1 n/a 89188.5247 2 178374.6(17) 178375.0563 -0.5 3 267557.0(19) 4 356732.3(19) 356734.2230 -2.0 5 445903.9(21) 445902.8721 1.0 6 535061.0(23) 535061.5810 7 624207.4(26) 624208.3606 -1.0 8 713344.0(27) 713341.2278 2.8 9 802455.7(27) 802458.1995 -2.5 10 891558.4(27) 891557.2903 1.1 f G. Cazzoli, L. Cludi, G. Buffa, and C. Puzzarini, “Precise THz Measurements of HCO+, N2H+, and CF+ for Astronomical Observations” Astrophys. J. Sup. 2012, 203, 11

1ν1 Excited State Rotational Transitions J' J'' Present Work (MHz)d Uncertainty (MHz) 1 88486.7 1.9 2 176955.4 1.6 3 n/a f 4 353900.7 0.9 5 442366.0 1.1 6 530813.3 1.3 7 619257.7 8 707676.3 9 796093.7 10 884477.9 2.4 Deduced 9 new excited rotational transitions Never directly observed Uncertainty < 3MHz Should be able to facilitate astronomical observations in “hot” environments Hot cores Circumstellar envelopes d B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press). f Lattanzi, V.; Walters, A.; Drouin, B. J.; Pearson, J. C. Rotational Spectrum of the Formyl Cation, HCO+, to 1.2 THz. Astrophys. J. 2007, 662, 771–778

Future Improvements to Linecenter Determination Sub-Doppler Spectroscopy Achieved with cavity enhancement NICE-OHVMS Narrower sub-Doppler features should provide more accurate & precise linecenter determination P(5) line of ν1 fundamental band of HCO+ Feature width ~50 MHz B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

Conclusions Performed infrared spectroscopy on the ν1 fundamental band of HCO+ and calibrated 20 rovibrational transitions with an optical comb Lines fit with average precision of ~600 kHz Demonstrated a general technique for obtaining rotational spectra of molecular ions using infrared transitions Current/future directions: Employ cavity enhancement New targets CH5+ HO2+ Others

Acknowledgments Advisor: Ben McCall Group Members: Brian Siller James Hodges Funding Agencies